Гены несиндромальных форм азооспермии и олигозооспермии тяжелой степени
https://doi.org/10.17650/2070-9781-2019-20-2-16-28
Аннотация
Сперматогенез — сложный биологический процесс дифференцировки и созревания мужских половых клеток, в который у человека вовлечено более 2300 генов. До недавнего времени изучалась роль лишь малой части этих генов в развитии патозооспермии и мужского бесплодия, но в последние годы использование технологий анализа генома, таких как секвенирование экзома и хромосомный микроматричный анализ, позволило существенно расширить возможности исследований, предметом которых стали многие гены и локусы генома, генные мутации и полиморфизмы, вариации числа копий, приводящие к различным генетическим синдромам и заболеваниям, в том числе к мужскому и женскому бесплодию. В данной статье описан ряд генов, которые связаны с развитием несиндромальных форм мужского бесплодия с азооспермией и олигозооспермией тяжелой степени.
Ключевые слова
Об авторах
О. А. СолововаРоссия
Ольга Александровна Соловова
115522 Москва, ул. Москворечье, 1
В. Б. Черных
Россия
115522 Москва, ул. Москворечье, 1;117437Москва, ул. Островитянова, 1
Список литературы
1. Hochstenbach R., Hackstein J.H. The comparative genetics of human spermatogenesis: clues from flies and other model organisms. Results Probl Cell Differ 2000;28:271-98.
2. Черных В.Б., Яманди ТА., Сафина Н.Ю. Новые молекулярные технологии в диагностике генетических причин мужского бесплодия. Андрология и генитальная хирургия 2017;18(1):10—22. DOI: 10.17650/2070-9781-2017-18-1-10-22.
3. Yang F., Eckardt S., Leu N.A. et al. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 2008;180(4):673—9. DOI: 10.1083/jcb.200709057.
4. Okutman O., Muller J., Baert Y et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failury in a Turkish family. Hum Mol Genet 2015;24(19):5581 —8. DOI: 10.1093/hmg/ddv290.
5. Colombo R., Pontoglio A., Bini M. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecol Obstet Invest 2017;82(3):283—6. DOI: 10.1159/000468934.
6. Wang X., Jin H.R., Cui Y.Q. et al. Case study of a patient with cryptozoospermia associated with recessive TEX15 nonsense mutation. Asian J Androl 2018;20(1):101—2. DOI: 10.4103/1008-682X.194998.
7. Bolcun-Filas E., Hall E., Speed R. et al. Mutations of the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal complex structural components and DNA repair. PLoS Genet 2009;5(2):e1000393. DOI: 10.1371/jour-nal.pgen.1000393.
8. De Vries L., Behar D.M., Smirin-Yosef P. et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab 2014;99(10):E2129—32. DOI: 10.1210/jc.2014-1268.
9. Maor-Sagie E., Cinnamon Y., Yaacov B. et al. Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J Assist Reprod Genet 2015;32(6):887—91. DOI: 10.1007/s10815-015-0445-y.
10. Yuan L., Liu J.G., Zhao J. et al. The murine SCP3 gene is required for synaptone-mal complex assembly, chromosome synapsis, and male fertility. Mol Cell 2000;5(1):73—83.
11. Miyamoto T., Hasuike S., Yogev L. et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet 2003;362(9397):1714—9. DOI: 10.1016/S0140-6736(03)14845-3.
12. Yang F., De La Fuente R., Leu N.A. et al. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol 2006;173(4):497—507. DOI: 10.1083/jcb.200603063.
13. Shoji M., Tanaka T., Hosokawa M. et al. The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell 2009;17(6):775—87. DOI: 10.1016/j.devcel.2009.10.012.
14. Arafat M., Har-Vardi I., Harlev A. et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet 2017;54(9):633—9. DOI: 10.1136/jmedgenet-2017-104514.
15. Souquet B., Abby E., Herve R. et al. MEIOB targets single-strand DNA and necessary for meiotic recombination. PLoS Genet 2013;9(9):e1003784. DOI: 10.1371/journal.pgen.1003784.
16. Gershoni M., Hauser R., Yogev L. et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med 2017;19(9):998—1006. DOI: 10.1038/gim.2016.225.
17. Yan W., Ma L., Burns K.H., Matzuk M.M. Haploinsufficiency of kelch-like protein homolog 10 causes infertility in male mice. Proc Natl Acad Sci U S A 2004;101(20):7793—8. DOI: 10.1073/pnas.0308025101.
18. Yatsenko A.N., Roy A., Chen R. et al. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet 2006;15(23):3411—9. DOI: 10.1093/hmg/ddl417.
19. Julaton V.T., Reijo Pera R.A. NANOS3 function in human germ cell development. Hum Mol Genet 2011;20(11):2238—50. DOI: 10.1093/hmg/ddr114.
20. Wang Z., Lin H. Nanos maintains germline stem cell self-renewal by preventing differentiation. Science 2004;303(5666):2016—9. DOI: 10.1126/science.1093983.
21. Kusz-Zamelczyk K., Sajek M., Spik A. et al. Mutations of NANOS1, a human ho-mologue of the Drosophila morphogen, are associated with a lack of germ cells in testis or severe oligo-astheno-teratozoo-spermia. J Med Genet 2013;50(3):187—93. DOI: 10.1136/jmedgenet-2012-101230.
22. Lee B., Park I., Jin S. et al. Impaired spermatogenesis and fertility in mice carrying a mutation in the Spink2 gene expressed predominantly in testis. J Biol Chem 2011;286(33):29108—17. DOI: 10.1074/jbc.M111.244905.
23. Kheraff Z.E., Christou-Kent M., Karaouzene T. et al. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol Med 2017;9(8):1132—49. DOI: 10.15252/emmm.201607461.
24. Deng Y., Hu L.S., Lu G.X. Expression and identification of a novel apoptosis gene Spata17 (MSRG-11) in mouse sper-matogenic cells. Acta Biochim Biophys Sin (Shanghai) 2006;38(1):37-45.
25. Yan W., Si Y., Slaymaker S. et al. ZMYND15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility. J Biol Chem 2010;285(41):31418-26. DOI: 10.1074/jbc.M110.116418.
26. Ayhan O., Balkan M., Guven A. et al. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet 2014;51(4):239-44. DOI: 10.1136/jmedgenet-2013-102102.
27. Falender A.E., Freiman R.N., Geles K.G. et al. Maintenance of spermatogenesis requires TAF4b, a gonadal-specific subunit of TFIID. Genes Dev 2005;19(7):794-803. DOI: 10.1101/gad.1290105.
28. Greenbaum M.P., Yan W., Wu M.H. et al. TEX14 is essential for intercellular bridges and fertility in male mice. Proc Natl Acad Sci U S A 2006;103(13):4982—7. DOI: 10.1073/pnas.0505123103.
29. Gershoni M., Hauser R., Yogev L. et al. A familial study of azoospermic men identifies three novel causative mutations in three human azoospermia genes. Genet Med 2017;19(9):998-1006. DOI: 10.1038/gim.2016.225.
30. Ballow D., Meistrich M.L., Matzuk M., Rajkovic A. Sohlh1 is essential for sper-matogonial differentiation. Dev Biol 2006;294(1):161—7. DOI: 10.1016/j.yd-bio.2006.02.027.
31. Choi Y., Jeon S., Choi M. et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia. Hum Mutat 2010;31(7):788—93. DOI: 10.1002/humu.21264.
32. Nakamura S., Miyado M., Saito K. et al. Next-generation sequencing for patients with non-obstructive azoospermia: implications for significant roles of monogenic/ oligogenic mutations. Andrology 2017;5(4):824—31. DOI: 10.1111/andr.12378.
33. Gottlieb B., Beitel L.K., Nadarajah A. et al. The androgen receptor gene mutations database: 2012 update. Hum Mutat 2012;33(5):887—94. DOI: 10.1002/humu.22046.
34. Davis-Dao C.A., Tuazon E.D., Sokol R.Z., Cortessis V.K. Male infertility and variation in CAG repeat length in the androgen receptor gene: a meta-analysis. J Clin Endocrinol Metab 2007;92(11):4319—26. DOI: 10.1210/jc.2007-1110.
35. Ferlin A., Vinanzi C., Garolla A. et al. Male infertility and androgen receptor gene mutations: clinical features and identification of seven novel mutations. Clin Endocrinol (Oxf) 2006;65(5):606—10. DOI: 10.1111/j.1365-2265.2006.02635.x.
36. Li L., Yang X., Wang R. et al. Androgen receptor gene mutations are associated with male infertility in Northeast China: clinical features and identification of two novel mutations. Andrologia 2018;51(3):e13195. DOI: 10.1111/and.13195.
37. Wosnitzer M.S., Mielnik A., Dabaja A. et al. Ubiquitin specific protease 26 (USP26) expression analysis in human testicular and extragonadal tissues indicates diverse action of USP26 in cell differentiation and tumorigenesis. PLoS One 2014;9(6):e98638. DOI: 10.1371/journal.pone.0098638.
38. Stouffs K., Lissens W., Tournaye H. et al. Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet 2005;13(3):336-40. DOI: 10.1038/sj.ejhg.5201335.
39. Ma Q., Li Y., Guo H. et al. A novel mis-sense mutation in USP26 gene is associated with nonobstructive azoospermia. Reprod Sci 2016;23(10):1434—41. DOI: 10.1177/1933719116641758.
40. Okutman O., Muller J., Skory V. et al. A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family. J Assist Reprod Genet 2017;34(5):683—94. DOI: 10.1007/s10815-017-0900-z.
41. Yatsenko A.N., Georgiadis A.P., Ropke A. et al. X-linked TEX11 mutations, meiotic arrest and azoospermia in infertile men. N Engl J Med 2015;372(22):2097—107. DOI: 10.1056/NEJMoa1406192.
42. Adelman C.A., Petrini J.H. ZIP4H (TEX11) deficiency in the mouse impairs meiotic double strand break repair and the regulation of crossing over. PLoS Genet 2008;4(3):е1000042. DOI: 10.1371/jour-nal.pgen.1000042.
43. Gueler B., Sonne S.B., Zimmer J. et al. AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours: new evidence for phenotypic plasticity of germ cells. Hum Reprod 2012;27(6):1547—55. DOI: 10.1093/hum-rep/des047.
44. Foresta C., Ferlin A., Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Molec Genet 2000;9(8):1161-9.
45. Sun C., Skaletsky H., Birren B. et al. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 1999;23(4):429—32. DOI: 10.1038/70539.
46. Luddi A., Margollicci M., Gambera L. et al. Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med 2009;360(9):881-5. DOI: 10.1056/NEJ-Moa0806218.
47. Krausz C., Degl'Innocenti S., Nuti F. et al. Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet 2006;15(18):2673—81. DOI: 10.1093/hmg/ddl198.
Рецензия
Для цитирования:
Соловова О.А., Черных В.Б. Гены несиндромальных форм азооспермии и олигозооспермии тяжелой степени. Андрология и генитальная хирургия. 2019;20(2):16-28. https://doi.org/10.17650/2070-9781-2019-20-2-16-28
For citation:
Solovova O.A., Chernykh V.B. Genetic causes of nonsyndromic forms of azoospermia and severe oligozoospermia in infertility men. Andrology and Genital Surgery. 2019;20(2):16-28. (In Russ.) https://doi.org/10.17650/2070-9781-2019-20-2-16-28