Preview

Андрология и генитальная хирургия

Расширенный поиск

НАРУШЕНИЕ КОНДЕНСАЦИИ ХРОМАТИНА СПЕРМАТОЗОИДОВ И ФРАГМЕНТАЦИЯ ДНК СПЕРМАТОЗОИДОВ: ЕСТЬ ЛИ КОРРЕЛЯЦИЯ?

https://doi.org/10.17650/2070-9781-2017-18-1-48-61

Полный текст:

Аннотация

Введение. В последнее десятилетие появилось понимание двоякой природы повреждения генетического аппарата сперматозоидов: нарушение конденсации хроматина («незрелый» хроматин, НХ), связанное с нарушенной протаминизацией и приводящее к нарушению эпигенетической регуляции раннего эмбриогенеза, и нарушение целостности ДНК сперматозоидов – фрагментация ДНК (ФДС).

Цель исследования – изучение корреляции между нарушением конденсации хроматина сперматозоидов и ФДС.

Материалы и методы. Проводили исследование сперматозоидов 54 фертильных мужчин (1-я группа, контрольная), 46 пациентов с первичным бесплодием (2-я группа) и 111 пациентов, в анамнезе жен которых имели место аномалии беременности либо неудачи применения вспомогательных репродуктивных технологий (ВРТ) – остановка развития эмбриона (3-я группа). Наличие НХ выявляли методом количественного электронно-микроскопического исследования, ФДС – методом TUNEL. Исследование НХ и ФДС в одном и том же сперматозоиде проводили методом корреляционной микроскопии (TUNEL с последующим ультраструктурным изучением маркированных клеток).

Результаты. Содержание сперматозоидов с НХ статистически достоверно отличалось от контрольной в 3-й группе (29,26 ± 13,49 против 22,43 ± 9,54; p = 0,006). Содержание НХ во 2-й группе выше, чем в 1-й, но разница статистически недостоверна (p = 0,061). Достоверные различия по содержанию сперматозоидов с остаточной цитоплазмой на головке отмечены между группой фертильных мужчин и 2-й и 3-й группами (p = 0,0001 и p = 0,0006 соответственно) и на шейке (p = 0,0002 и p = 0,0003 соответственно). Содержание сперматозоидов с ФДС статистически достоверно отличалось от контрольной во 2-й группе (21,40 ± 11,88 против 13,70 ± 7,00, p = 0,03) и не отличалось в 3-й группе. Очень слабая корреляция между содержанием сперматозоидов с ФДС и сперматозоидов с НХ отмечена во всех 3 группах (r = 0,18, r = 0,33 и r = 0,01 соответственно). Методом корреляционной электронной микроскопии исследовано 46 сперматозоидов, из них 23 с НХ и 23 – с конденсированным хроматином. В 11 из 23 сперматозоидов с НХ выявлена ФДС. В сперматозоидах с конденсированным хроматином ФДС определена в 6 сперматозоидах.

Заключение. ФДС и нарушение конденсации хроматина – в высокой степени независимые параметры, которые должны учитываться при выяснении генезиса бесплодия. НХ чаще обнаруживается в сперматозоидах пациентов, у жен которых в анамнезе – нарушение эмбриогенеза. ФДС чаще выявляется при первичном бесплодии.

Об авторах

Е. Е. Брагина
Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»; ФГБНУ «Медико-генетический научный центр»
Россия

Контакты: Елизавета Ефимовна Брагина bragor@mail.ru 

119992 Москва, Ленинские горы, 1, стр. 40



Е. А. Арифулин
Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
119992 Москва, Ленинские горы, 1, стр. 40


Е. М. Лазарева
Биологический факультет ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
119234 Москва, Ленинские горы, 1, стр. 12


М. А. Лелекова
ООО «ЦГРМ ИСКЧ», Банк репродуктивных клеток и тканей «Репробанк»
Россия
119333 Москва, ул. Губкина, 3, корп. 1


О. Л. Коломиец
ФГБУН «Институт общей генетики им. Н.И. Вавилова» РАН
Россия
119991 ГСП – 1 Москва, ул. Губкина, 3 


А. Г. Чоговадзе
ООО «ЦГРМ ИСКЧ», Банк репродуктивных клеток и тканей «Репробанк»
Россия
119333 Москва, ул. Губкина, 3, корп. 1


Т. М. Сорокина
ФГБНУ «Медико-генетический научный центр»
Россия
119234 Москва, Ленинские горы, 1, стр. 1


Л. Ф. Курило
ФГБНУ «Медико-генетический научный центр»
Россия
119234 Москва, Ленинские горы, 1, стр. 1


В. Ю. Поляков
Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского ФГБОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
119992 Москва, Ленинские горы, 1, стр. 40


Список литературы

1. Zamboni L. Sperm structure and its relevance to infertility. An electron microscopic study. Arch Pathol Lab Med 1992;116(4):325–44.

2. Gannon J.R., Emery B.R., Jenkins T.G., Carrell D.T. The sperm epigenome: implications for the embryo. Adv Exp Med Biol 2014;791:53–66.

3. Carrell D.T. Epigenetics of the male gamete. Fertil Steril 2012;97(2):267–74.

4. Castillo J., Estanyol J.M., Ballescá J.L., Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2015;17(4):601–9.

5. Braun R.E. Packaging paternal chromosomes with protamine. Nature Genetics 2001;28:10–2.

6. Георгиев Г.П., Ченцов Ю.С. О структуре клеточного ядра(экспериментальное электронно-микроскопическое исследование изолированных ядер). Докл. АН СССР 1960;132:199–202. [Georgiev G.P., Chentsov Yu.S. On the structure of cell nuclei: Experimental electron microscopic investigation of isolated nuclei. Doklady Akademii nauk SSSR = Proceedings of the USSR Academy of Sciences 1960;132:199–202. (In Russ.)].

7. Kierszenbaum A.L., Tres L.L. The acrosome – acroplaxome – manchette complex and the shaping of the spermatid head. Arch. Histol Cytol 2004;67:271–84.

8. Green G.R., Balhorn R., Poccia D.L., Hecht N.B. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev 1994;37:255–63.

9. Govin J., Caron C., Rousseaux S. et al. Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 2005;30:357–9.

10. McPherson S., Longo F.J., Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 1993;37:109–28.

11. Коничев А.С., Севастьянова Г.А. Молекулярная биология. М.: ИЦ «Академия», 2012. [Konichev A.S., Sevastyanova G.A. Molecular biology. Moscow: IC «Akademiya», 2012. (In Russ.)].

12. Marcon L., Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004;70:910–8. 13.

13. Oliva R. Protamines and male infertility. Hum Reprod Update 2006;12(4):417–35.

14. Castillo J., Amaral A., Oliva R. Sperm nuclear proteome and its epigenetic potential. Andrology 2014;2(3):326–38.

15. Prigent Y., Muller S., Dadoune J.P. Immunoelectron microscopical distribution of histones H2B and H3 and protamines during human spermiogenesis. Mol Hum Reprod 1996;2(12):929–235.

16. Dadoune J.P. Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 2003;61:56–75.

17. Love C.C., Kenney R. Scrotal heat stress induces altered sperm chromatin structure associated with a decrease in protamine disulfide bonding in the stallion. Biol Reprod 1999;60:615–20.

18. D’Occhio M.J., Hengstberger K.J., Johnston S.D. Biology of sperm chromatin structure and relationship to male fertility and embryonic survival. Anim Reprod Sci 2007;101(1–2):1–17.

19. Brykczynska U., Hisano M., Erkek S. et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 2010;17(6):679–87.

20. Miller D., Brinkworth M., Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 2010;139(2):287–301.

21. Hammoud S.S., Nix D.A., Zhang H. et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature 2009;23;460(7254):473–78.

22. Arpanahi A., Brinkworth M., Iles D. et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 2009;19:1338–49.

23. Rousseaux S., Reynoird N., Escoffier E. et al. Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reproductive BioMedicine Online 2008;16:492–503.

24. Ward W.S. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 2010;16:30–6.

25. Małgorzata K., Depa-Martynów M., Butowska W. et al. Human spermatozoa ultrastructure assessment in the infertility treatment by assisted reproduction technique. Arch Androl 2007;53(6):297–302.

26. Бочарова Е.Н., Брагина Е.Е., Гусак Ю.К. Количественное ультраструктурное исследование сперматозоидов человека при нарушениях фертильности. Вестник новых медицинских технологий 2007;24(4):199–201. [Bocharova E.N., Bragina E.E., Gusak Yu.K. Quantitative ultrastructural research of spermatozoon from patients with fertility infringement. Vestnik novikh meditsinskikh tekhnologiy = Journal of New Medical Technologies 2007;24(4):199–201. (In Russ.)]

27. Talebi A.R., Vahidi S., Aflatoonian A. et al. Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. Andrologia 2012;44 Suppl 1:462–70.

28. Hammoud S.S., Nix D.A., Hammoud A.O. et al. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 2011;26:2558–69.

29. Арифулин Е.А., Брагина Е.Е., Замятнина В.А. и др. Компактизация ДНК в сперматозоидах человека. I. Динамика изменений компактизации нуклеогистонного и нуклеопротаминного хроматина в дифференцирующихся сперматидах. Онтогенез 2012;(2):143–53. [Arifulin E.A., Bragina E.E., Zamyatnina V.A. et al. Chromatin folding in human spermatozoa. I. Dynamics of chromatin remodeling in differentiating human spermatids. Ontogenez = Russian Journal of Developmental Biology 2012;(2):143–53. (In Russ.)].

30. Manochantr S., Chiamchanya C., Sobhon P. Relationship between chromatin condensation, DNA integrity and quality of ejaculated spermatozoa from infertile men. Andrologia 2012;44(3):187–99.

31. Iranpour F.G., Nasr-Esfahani M.H., Valojerdi M.R., al-Taraihi T.M. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J Assist Reprod Genet 2000;17(1):60–6.

32. Zini A., Gabriel M.S., Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril 2007;87(1):217–19.

33. Foresta C., Zorzi M., Rossato M., Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl 1992;15(4):330–7.

34. Bianchi P.G., Manicardi G.C., Bizzaro D. et al. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 1993;49:1083–88.

35. Montjean D., Zini A., Ravel C. et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology 2015;3(2):235–40.

36. Singh N.P., Danner D.B., Tice R.R. et al. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res 1989;184(2):461–70.

37. Gorczyca W., Traganos F., Jesionowska H., Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 1993;207(1):202–5.

38. Varghese A.C., Bragais F.M., Mukhopadhyay D. et al. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia 2009;41(4):207–15.

39. Ahmadi A., Ng S.C. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 1999;284:696–704.

40. Benchaib M., Braun V., Lornage J. et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 2003;18:1023–8.

41. Seli E., Gargner D.K., Schoolcraft W.B. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 2004;82:378–83.

42. Simon L., Liu L., Murphy K. et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod 2014;29(5):904–17.

43. Hamidi J., Frainais C., Amar E. et al. A double-blinded comparison of in situ TUNEL and aniline blue versus flow cytometry acridine orange for the determination of sperm DNA fragmentation and nucleus decondensation state index. Zygote 2015;23(4):556–62.

44. Manicardi G.C., Bianchi P.G., Pantano S. et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 1995;52(4): 864–7.

45. Simon L., Castillo J., Oliva R., Lewis S.E. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online 2011;23(6):724–34.

46. Skowronek F. Casanova G. Alciaturi J. et al. DNA sperm damage correlates with nuclear ultrastructural sperm defects in teratozoospermic men. Andrologia 2012;44(1):59–65.

47. Irvine D.S., Twigg J.P., Gordon E.L. et al. DNA integrity in human spermatozoa: relationships with semen quality. J Androl 2000;21:33–44.

48. Mantas D., Angelopoulou R., Msaouel P. et al. Evaluation of sperm chromatin quality and screening of Y chromosome microdeletions in Greek males with severe oligozoospermia. Arch Androl 2007;53:5–8.

49. De Iuliis G.N., Thomson L.K., Mitchell L.A. et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-– deoxyguanosine, a marker of oxidative stress. Biol Reprod 2009;81(3):517–24.

50. Aoki V.W., Emery B.R., Liu L., Carrell D.T. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl 2006;27:890–8.

51. Zini A., Bielecki R., Phang D., Zenzes M.T. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 2001;75:674–7.

52. Virro M.R., Larson-Cook K.L., Evenson D.P. Sperm chromatin structure assay(scsa) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004;81:1289–95.

53. Wyrobek A.J., Eskenazi B., Young S. et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 2006;103:9601–6.

54. Sati L., Ovari L., Bennett D. et al. Double probing of human spermatozoa for persistent histones, surplus cytoplasm, apoptosis and DNA fragmentation. Reprod Biomed Online 2008;16(4):570–9.

55. Muratori M., Tamburrino L., Marchiani S. et al. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol Med 2015;21:109–22.

56. Брагина Е.Е., Бочарова Е.Н. Количественное электронно-микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная хирургия 2014;(1):41–50. [Bragina Y.Y., Bocharova Y.N. Quantitative electron microscopic examination of sperm for male infertility diagnosis. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2014;(1):41–50. (In Russ.)].

57. Guzick D.S., Overstreet J.W., Factor-Litvak P. et al. National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 2001;345:1388–93.

58. Sakkas D., Tomlinson M. Assessment of sperm competence. Semin Reprod Med 2000;18:133–9.

59. Avendano C., Franchi A., Duran H., Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril 2010;94:549–57.

60. Abu D.A., Franken D.R., Hoffman B., Henkel R. Sequential analysis of sperm functional aspects involved in fertilisation: a pilot study. Andrologia 2012;44(Suppl 1): 175–81.

61. Boitrelle F., Pagnier M., Athiel Y. et al. A human morphologically normal spermatozoon may have noncondensed chromatin. Andrologia 2015;47(8):879–86.

62. Lewis J.D., Song Y., de Jong M.E. et al. A walk through vertebrate and invertebrate protamines. Chromosoma 1999;111:473–82.

63. Corzett M., Mazrimas J., Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev 2002;61:519–27.

64. Ozmen B., Koutlaki N., Youssry M. et al. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online 2007;14:384–95.

65. Agarwal A., Said Tamer M. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003;9:331–45.

66. Tarozzi N., Bizzaro D., Flamigni C., Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 2007;14:746–57.

67. Manicardi G.C., Bizzaro D., Sakkas D. Basic and Clinical Aspects of Sperm Chromomycin A3 Assay. In: Zini A., Agarwal A.(Ed.). Sperm Chromatin biological and clinical application in male infertility and assisted reproduction. New York: Springer, 2011. Pp. 171–179.

68. Baccetti B., Bergamini M., Bernieri G. et al. Submicroscopic mathematical evaluation of spermatozoa in assisted reproduction. 4. The bovine fertilization (Notulae seminologicae 10). J Submicrosc Cytol Pathol 1997;29(4):563–82.

69. Bartoov B., Eltes F., Reichart M. et al. Quantitative ultramorphological analysis of human sperm: fifteen years of experience in the diagnosis and management of male factor infertility. Arch Androl 1999;43(1):13–25.

70. Zhang Z.H., Mu S.M., Guo M.S. et al. Dynamics of histone H2A, H4 and HS1ph during spermatogenesis with a focus on chromatin condensation and maturity of spermatozoa. Sci Rep 2016;28:25089.

71. Auger J., Mesbah M., Huber C., Dadoune J.P. Analine blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl 1990;13:452–62.

72. Sakkas D., Urner F., Bianchi P.G. et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod 1996;11(4):837–43.

73. Eid L.N., Lorton S.P., Parrish J.J. Paternal infl uence on S-phase in the fi rst cell cycle of the bovine embryo. Biol Reprod 1994;51:1232–7.

74. Zalenskaya I.A., Bradbury E.M., Zalensky A.O. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Comm 2000;279:213–8.

75. Puri D., Dhawan J., Mishra R.K. The paternal hidden agenda: Epigenetic inheritance through sperm chromatin. Epigenetics 2010;5:386–91.

76. Ihara M., Meyer-Ficca M.L., Leu N.A. et al. Paternal poly(ADP ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet 2014;10: e1004317.

77. Junca A., Gonzalez Marti B., Tosti E. et al. Sperm nucleus decondensation, hyaluronic acid(HA) binding and oocyte activation capacity: different markers of sperm immaturity? Case reports. J Assist Reprod Genet 2012;29:353–5.

78. Dattilo M., Cornet D., Amar E. et al. The importance of the one carbon cycle nutritional support in human male fertility: a preliminary clinical report. Reprod Biol Endocrinol 2014;12:71.

79. Kazerooni T., Asadi N., Jadid L. et al. Evaluation of sperm’s chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet 2009;26:591–6.

80. Huszar G., Ozenci C.C., Cayli S. et al. Hyaluronic acid binding by human spermatozoa indicates cellular maturity, viability, and unreacted acrosomal status. Fertil Steril 2003;79(3):1616–24.

81. Huszar G., Sbracia M., Vigue L. et al. Sperm plasma membrane remodeling during spermiogenetic maturation in men: relationship among plasma membrane beta 1,4-galactosyltransferase, cytoplasmic creatine phosphokinase, and creatine phosphokinase isoform ratios. Biol Reprod 1997;56:1020–4.

82. Evenson D.P., Jost L.K., Marshall D. et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999;14(4):1039–49.

83. Sakkas D., Alvarez J.G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 2010;93:1027–36.

84. Agarwal A., Majzoub A., Esteves S.C. et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 2016;5(6):935–50. 85.

85. Agarwal A., Varghese, A. C., Sharma R.K. Markers of oxidative stress and sperm chromatin integrity. Methods Mol Biol 2009;590:377–402.

86. Barratt L.R., Aitken R.J., Björndahl L. et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications – a position report. Hum Reprod 2010;25:824–38.

87. Zini A., Sigman M. Are tests of sperm DNA damage clinically useful? pros and cons. J Androl 2009;30(3):219–29.

88. Davies M.J., Moore V.M., Willson K.J. et al. Reproductive technologies and the risk of birth defects. New Engl J Med 2012;366:1803–13.

89. Fernández-Gonzalez R., Moreira P.N., Pérez-Crespo M. et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 2008;78:761–72.

90. Haghpanah T., Salehi M., Ghaffari Novin M. et al. Does sperm DNA fragmentation affect the developmental potential and the incidence of apoptosis following blastomere biopsy? Syst Biol Reprod Med 2016;62(1):1–10.

91. Zini A., Boman J.M., Belzile E., Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and metaanalysis. Hum Reprod 2008;23:2663–8.

92. Collins J.A., Barnhart K.T., Schlegel P.N. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril 2008;89:823–31.

93. Robinson L., Gallos I.D., Conner S.J. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 2012;27(10):2908–17.

94. Osman A., Alsomait H., Seshadri S. et al. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online 2015;30:120–7.

95. Cissen M., Wely M.V., Scholten I. et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One 2016;11(11):e0165125.

96. Showell M.G., Mackenzie-Proctor R., Brown J. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2014;(12):CD007411.

97. Menezo Y. Jr, Russo G., Tosti E. et al. Expression profile of genes coding for DNA repair in human oocytes using pangenomic microarrays, with a special focus on ROS linked decays. J Assist Reprod Genet 2007;24:513–20.

98. Jungwirth А., Diemer T., Dohle G.R. et al. Guidelines on Male Infertility. European Association of Urology 2015. 42 p.

99. Jarow J., Sigman M., Kolettis P.N. et al. The optimal evaluation of the infertile male: best practice statement reviewed and validity confirmed 2011. Available at: https://www.auanet.org/education/ guidelines/maleinfertility-d. cfm. 1

100. Chohan K.R., Griffin J.T., Lafromboise M. et al. Comparison of chromatin assays for DNA fragmentation evaluation in human sperm. J Androl 2006;27(1):53–9.

101. Smith R., Kaune H., Parodi D. et al. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum Reprod 2006;21(4):986–93.

102. Tesarik J., Greco E., Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 2004;19(3):611–5.

103. Carrell D.T., Liu L., Peterson C.M. et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl 2003;49(1):49–55. 1

104. Sergerie M., Laforest G., Bujan L. et al. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod 2005;20(12):3446–51.

105. Tamburrino L., Marchiani S., Montoya M. et al. Mechanisms and clinical correlates of sperm DNA damage. Asian J Androl 2012;14(1):24–31.

106. Руднева С.А., Брагина Е.Е., Арифулин Е.А. и др. Фрагментация ДНК в сперматозоидах и ее взаимосвязь с нарушением сперматогенеза. Андрология и генитальная хирургия 2014;(4):26–33. [Rudneva S.A., Bragina E.E., Arifulin E.A. et al. DNA fragmentation in spermatozoa and its relationship with impaired spermatogenesis. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2014;(4):26–33. (In Russ.)].

107. Sakkas D., Moffatt O., Manicardi G.C. et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 2002;66:1061–7.

108. Cho C., Willis W.D., Goulding E.H. et al. Haploinsufficiency of protamine-1 or –2 causes infertility in mice. Nat Genet 2001;8:82–6.

109. Aoki V.W., Moskovtsev S.I., Willis J. et al. DNA integrity is compromised in protamine-deficient human sperm. J Androl 2005;26:741–8.

110. Henkel R., Hoogendijk C.F., Bouic P.J., Kruger T.F. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia 2010;42(5): 305–13.

111. Sharbatoghli M., Rezazadeh Valojerdi M., Bahadori M.H. et al. The Relationship between Seminal Melatonin with Sperm Parameters, DNA Fragmentation and Nuclear Maturity in Intra-Cytoplasmic Sperm Injection Candidates. Cell J 2015;17(3):547–53.

112. Shamsi M.B., Kumar R., Dada R. Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res 2008;127:1115–23.

113. Sakkas D., Mariethoz E., Manicardi G. et al. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999;4:31–7.

114. Mahfouz R.Z., Sharma R.K., Poenicke K. et al. Evaluation of poly (ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 2009;91(5 Suppl): 2210–20.

115. Venkatesh S., Riyaz A.M., Shamsi M.B. et al. Clinical significance of reactive oxygen species in semen of infertile Indian men. Andrologia 2009;41:251–56.

116. Moskovtsev S.I., Jarvi K., Mullen J.B. et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril 2010;93(4):1142–6.

117. Gharagozloo P., Aitken R.J. The role of sperm oxidative stress in male infertility and the significance of oral antioxidant therapy. Hum Reprod 2011;26(7):1628–40.

118. Menezo Y., Hazout A., Panteix G. et al. Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 2007;14:418–21.

119. Menezo I., Evenson D., Cohen M., Dale B. Effect of Antioxidants on Sperm Genetic Damage. In: E. Baldi, M. Muratori(eds.), Genetic Damage in Human Spermatozoa, Advances in Experimental Medicine and Biology. New York: Springer Science+Business Media, 2014. P. 173–189.


Для цитирования:


Брагина Е.Е., Арифулин Е.А., Лазарева Е.М., Лелекова М.А., Коломиец О.Л., Чоговадзе А.Г., Сорокина Т.М., Курило Л.Ф., Поляков В.Ю. НАРУШЕНИЕ КОНДЕНСАЦИИ ХРОМАТИНА СПЕРМАТОЗОИДОВ И ФРАГМЕНТАЦИЯ ДНК СПЕРМАТОЗОИДОВ: ЕСТЬ ЛИ КОРРЕЛЯЦИЯ? Андрология и генитальная хирургия. 2017;18(1):48-61. https://doi.org/10.17650/2070-9781-2017-18-1-48-61

For citation:


Bragina E.E., Arifulin E.A., Lazareva E.M., Lelekova M.A., Kolomiets O.L., Chogovadze A.G., Sorokina T.M., Kurilo L.F., Polyakov V.Y. ABNORMAL CHROMATIN CONDENSATION IN SPERMATOZOA AND DNA FRAGMENTATION IN SPERMATOZOA: IS THERE A CORRELATION? Andrology and Genital Surgery. 2017;18(1):48-61. (In Russ.) https://doi.org/10.17650/2070-9781-2017-18-1-48-61

Просмотров: 4722


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2070-9781 (Print)