Актуальные и перспективные методы лечения идиопатического мужского бесплодия
https://doi.org/10.17650/2070-9781-2022-23-3-48-53
Аннотация
Для значительного числа пар во всем мире мужское бесплодие является серьезным испытанием. Это непростой клинический вызов и для андролога – до 50 % случаев мужского бесплодия не имеют идентифицируемой этиологии, и в арсенале врачей отсутствуют эффективные, основанные на доказательствах, методы лечения. Длительное время для эмпирической терапии использовались антиоксиданты, но до сих пор нет убедительных данных, что фертильность и частота живорождений действительно улучшаются после приема антиоксидантных добавок. Данный обзор является попыткой обобщить текущие и перспективные методы терапии идиопатического бесплодия у мужчин. Особое внимание уделено регуляторным пептидам как многообещающим средствам для улучшения мужской фертильности.
Об авторах
Е. А. ЕфремовРоссия
Москва 117997, ул. Островитянова, 1
127486 Москва, Коровинское шоссе, 9, корп. 2
Е. В. Касатонова
Россия
Елена Владимировна Касатонова
105425 Москва, ул. 3-я Парковая, 51, стр. 1
Список литературы
1. WHO Manual for the standardized investigation, diagnosis and management of the infertile male. Cambridge: Cambridge University Press, 2000.
2. Minhas S., Bettocchi C., Boeri L. et al. European Association of Urology Guidelines on Male Sexual and Reproductive Health: 2021 Update on Male Infertility. Eur Urol 2021;80(5):603–20. DOI: 10.1016/j.eururo.2021.08.014
3. Martins da Silva S.J., Brown S.G., Sutton K. et al. Drug discovery for male subfertility using high-throughput screening: a new approach to an unsolved problem. Hum Reprod 2017;32(5):974–84. DOI: 10.1093/humrep/dex055
4. Nixon B., Bromfield E.G. New horizons in male subfertility and infertility. In: Male and sperm factors that maximize IVF success. Ed. by R.J. Aitken, D. Mortimer, G. Kovacs. Cambridge University Press, 2020. P. 15–27. DOI: 10.1017/9781108762571.002
5. Khourdaji I., Lee H., Smith R.P. Frontiers in hormone therapy for male infertility. Transl Androl Urol 2018;7(Suppl 3):S353–S66. DOI: 10.21037/tau.2018.04.03
6. Shah R., Agarwal A., Kavoussi P. et al. Consensus and diversity in the management of varicocele for male infertility: results of a global practice survey and comparison with guidelines and recommendations. World J Mens Health 2022. Ahead of print. DOI: 10.5534/wjmh.220048
7. Punjani N., Kang C., Lamb D.J., Schlegel P.N. Current updates and future perspectives in the evaluation of azoospermia: a systematic review. Arab J Urol 2021;19(3):206–14. DOI: 10.1080/2090598X.2021.1954415
8. Simon L., Zini A., Dyachenko A. et al. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 2017;19(1):80–90. DOI: 10.4103/1008-682X.182822
9. Martins da Silva S.J. Male infertility and antioxidants: one small step for man, no giant leap for andrology? Reprod Biomed Online 2019;39(6):879–83. DOI: 10.1016/j.rbmo.2019.08.008
10. Majzoub A., Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 2018;16(1):113–24. DOI: 10.1016/j.aju.2017.11.013
11. De Ligny W., Smits R.M., Mackenzie-Proctor R. et al. Antioxidants for male subfertility. Cochrane Database Syst Rev 2022;5(5):CD007411. DOI: 10.1002/14651858.CD007411.pub5
12. Moreno I., Míguez-Forjan J.M., Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015;42(2):33–44. DOI: 10.5653/cerm.2015.42.2.33
13. Bhartiya D., Anand S., Patel H., Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017;15(1):89. DOI: 10.1186/s12958-017-0308-8
14. Abdelaal N.E., Tanga B.M., Abdelgawad M. et al. Cellular therapy via spermatogonial stem cells for treating impaired spermatogenesis, non-obstructive azoospermia. Cells 2021;10(7):1779. DOI: 10.3390/cells10071779
15. Tan K., Song H.W., Thompson M. et al. Transcriptome profiling reveals signaling conditions dictating human spermatogonia fate in vitro. Proc Natl Acad Sci U S A 2020;117(30):17832–41. DOI: 10.1073/pnas.2000362117
16. Kothandaraman N., Agarwal A., Abu-Elmagd M., Al-Qahtani M.H. Pathogenic landscape of idiopathic male infertility: new insight towards its regulatory networks. NPJ Genom Med 2016;1:16023. DOI: 10.1038/npjgenmed.2016.23
17. Cannarella R., Barbagallo F., Crafa A. et al. Seminal plasma transcriptome and proteome: towards a molecular approach in the diagnosis of idiopathic male infertility. Int J Mol Sci 2020;21(19):7308. DOI: 10.3390/ijms21197308
18. Jodar M., Soler-Ventura A., Oliva R. Semen proteomics and male infertility. J Proteomics 2017;162:125–34. DOI: 10.1016/j.jprot.2016.08.018
19. Kim W.J., Kim B.S., Kim H.J. et al. Intratesticular peptidyl prolyl isomerase 1 protein delivery using cationic lipid-coated fibroin nanoparticle complexes rescues male infertility in mice. ACS Nano 2020;14(10):13217–31. DOI: 10.1021/acsnano.0c04936
20. Fraser B., Peters A.E., Sutherland J.M. et al. Biocompatible nanomaterials as an emerging technology in reproductive health; a focus on the male. Front Physiol 2021;12:753686. DOI: 10.3389/fphys.2021.753686
21. Ertas Y.N., Abedi Dorcheh K., Akbari A., Jabbari E. Nanoparticles for targeted drug delivery to cancer stem cells: a review of recent advances. Nanomaterials (Basel) 2021;11(7):1755. DOI: 10.3390/nano11071755
22. Agarwal A., Durairajanayagam D., Halabi J. et al. Proteomics, oxidative stress and male infertility. Reprod Biomed Online 2014;29(1):32–58. DOI: 10.1016/j.rbmo.2014.02.013
23. Liu G., Li S., Ren J. et al. Effect of animal-sourced bioactive peptides on the in vitro development of mouse preantral follicles. J Ovarian Res 2020;13(1):108. DOI: 10.1186/s13048-020-00695-8
24. Sánchez A., Vázquez A. Bioactive peptides: a review. Food Qual Saf 2017;1:29–46. DOI: 10.1093/fqsafe/fyx006
25. Bhat Z.F., Kumar S., Bhat H.F. Bioactive peptides of animal origin: a review. J Food Sci Technol 2015;52(9):5377–92. DOI: 10.1007/s13197-015-1731-5
26. Porta A., Petrone A.M., Morello S. et al. Design and expression of peptides with antimicrobial activity against Salmonella typhimurium. Cell Microbiol 2017;19(2):e12645. DOI: 10.1111/cmi.12645
27. Ibrahim H.R., Ahmed A.S., Miyata T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res 2017;8(1):63–71. DOI: 10.1016/j.jare.2016.12.002
28. Shiratsuchi E., Ura M., Nakaba M. et al. Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts. J Pept Sci 2010;16(11):652–8. DOI: 10.1002/psc.1277
29. Kongcharoen A., Poolex W., Wichai T., Boonsombat R. Production of an antioxidative peptide from hairy basil seed waste by a recombinant Escherichia coli. Biotechnol Lett 2016;38(7):1195–201. DOI: 10.1007/s10529-016-2096-1
30. Blaurock N., Schmerler D., Hünniger K. et al. C-terminal alpha-1 antitrypsin peptide: a new sepsis biomarker with immunomodulatory function. Mediators Inflamm 2016;2016:6129437. DOI: 10.1155/2016/6129437
31. Iwaniak A., Darewicz M., Minkiewicz P. et al. [Biologically active peptides derived from food proteins as the food components with cardioprotective properties (In Polish)]. Pol Merkur Lekarski 2014;36(216):403–6.
32. Wang J., Wu Y., Chen Z. et al. Exogenous bioactive peptides have a potential therapeutic role in delaying aging in rodent models. Int J Mol Sci 2022;23(3):1421. DOI: 10.3390/ijms23031421
33. Zhou J., Yang X., Zhang W. et al. Construction of an anticancer fusion peptide (ACFP) derived from milk proteins and an assay of anti-ovarian cancer cells in vitro. Anticancer Agents Med Chem 2017;17(4):635–43. DOI: 10.2174/1871520616666160627091131
34. Tadesse S.A., Emire S.A. Production and processing of antioxidant bioactive peptides: a driving force for the functional food market. Heliyon 2020;6(8):e04765. DOI: 10.1016/j.heliyon.2020.e04765
35. Wu S., Yan M., Ge R., Cheng C.Y. Crosstalk between Sertoli and Germ cells in male fertility. Trends Mol Med 2020;26(2):215–31. DOI: 10.1016/j.molmed.2019.09.006
36. Satake H., Matsubara S., Aoyama M. et al. GPCR heterodimerization in the reproductive system: functional regulation and implication for biodiversity. Front Endocrinol (Lausanne) 2013;4:100. DOI: 10.3389/fendo.2013.00100
37. Hauser A.S., Chavali S., Masuho I. et al. Pharmacogenomics of GPCR drug targets. Cell 2018;172(1–2):4 –54.e19. DOI: 10.1016/j.cell.2017.11.033
38. Vaudry H., Tonon M.C., Vaudry D. Editorial: trends in regulatory peptides. Front Endocrinol (Lausanne) 2018;9:125. DOI: 10.3389/fendo.2018.00125.
39. Zhang D., Wang Y., Lin H. et al. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020;177(24):5489–508. DOI: 10.1111/bph.15252
40. Korhonen H., Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 2003;9:1297–308. DOI: 10.2174/1381612033454892.
41. Пушкарь Д.Ю., Куприянов Ю.А., Берников А.Н. и др. Оценка безопасности и эффективности лекарственного препарата на основе регуляторных полипептидов семенников PPR-001. Урология 2021;6:100–8. DOI: 10.18565/urology.2021.6.100-108
Рецензия
Для цитирования:
Ефремов Е.А., Касатонова Е.В. Актуальные и перспективные методы лечения идиопатического мужского бесплодия. Андрология и генитальная хирургия. 2022;23(3):48-53. https://doi.org/10.17650/2070-9781-2022-23-3-48-53
For citation:
Efremov E.A., Kasatonova E.V. Current and promising methods of idiopathic male infertility treatment. Andrology and Genital Surgery. 2022;23(3):48-53. (In Russ.) https://doi.org/10.17650/2070-9781-2022-23-3-48-53