Механизмы воздействия вируса SARS-CoV-2 на ткань предстательной железы, включая ассоциации с гормональным статусом пациента и поствакцинальные реакции
https://doi.org/10.17650/2070-9781-2022-23-3-41-47
Аннотация
К настоящему времени наиболее изученными негативными эффектами вируса SARS-CoV-2 являются его легочные проявления, а также поражение сердечно-сосудистой системы. Оценка постковидных изменений в органах мужской репродуктивной системы, а также анализ механизмов их возникновения представляются нам важными, поскольку они оказывают непосредственное влияние на фертильность, т. е. играют существенную роль в долгосрочной перспективе. Исследования, основанные на применении флуоресцентной гибридизации in situ, показали, что большинство эпителиальных клеток ацинусов, а также некоторые мезенхимальные и эндотелиальные клетки были положительны на РНК SARS-CoV-2. Что же касается коэкспрессии клеточных рецепторов ACE2 и сериновой протеазы TMPRSS2, которые вирус использует для проникновения в клетки, то она также была обнаружена в большинстве эпителиальных и стромальных клеток предстательной железы. Механизм поражения предстательной железы при COVID-19 может быть также связан с дисрегуляцией ренин-ангиотензиновой системы. Повышенный уровень секреции ангиотензина II в предстательной железе у пациентов с доброкачественной гиперплазией предстательной железы может усиливать влияние вируса непосредственно на клетки органа. Эти механизмы могут объяснить повышение уровня простатического специфического антигена в сыворотке пациентов, страдающих доброкачественной гиперплазией предстательной железы, в активный период COVID-19. Неспецифический механизм поражения предстательной железы связан с развитием коагулопатии – тромбозом ее венозного сплетения и гемодинамическими нарушениями, которые могут вызывать вторичное поражение паренхимы железы. Существует определенная связь между гормональным статусом пациента и тяжестью течения инфекции: низкие уровни как тестостерона, так и дигидротестостерона способствуют развитию тяжелых осложнений у пациентов, инфицированных SARS-CoV-2. Рассматривается возможность применения препаратов тестостерона у пациентов, страдающих гипогонадизмом и COVID-19, в качестве альтернативного варианта лечения – для подавления феномена цитокинового шторма. Пациенты с раком предстательной железы в анамнезе, с локализованным раком предстательной железы при отсутствии метастазов участвовали в исследованиях вакцин: среди побочных эффектов вакцинации в нескольких случаях отмечалась лишь регионарная лимфаденопатия на стороне инъекции препарата.
Об авторах
Л. О. СевергинаРоссия
Любовь Олеговна Севергина
119991 Москва, ул. Трубецкая, 8, стр. 2
П. В. Глыбочко
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
И. А. Коровин
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Л. М. Рапопорт
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
А. В. Беляков
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
А. И. Крюкова
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
С. М. Ефимочкина
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
А. Г. Яворовский
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Д. Г. Цариченко
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Д. О. Королев
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Список литературы
1. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80.e8. DOI: 10.1016/j.cell.2020.02.052
2. Song H., Seddighzadeh B., Cooperberg M.R., Huang F.W. Expression of ACE2, the SARS-CoV-2 receptor, and TMPRSS2 in prostate epithelial cells. Eur Urol 2020;78(2):296–8. DOI: 10.1016/j.eururo.2020.04.065
3. Tur-Kaspa I., Tur-Kaspa T., Hildebrand G., Cohen D. COVID-19 may affect male fertility but is not sexually transmitted: a systematic review. F S Rev 2021;2(2):140–9. DOI: 10.1016/j.xfnr.2021.01.002
4. Wong D.W.L., Klinkhammer B.M., Djudjaj S. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 2021;10(8):1900. DOI: 10.3390/cells10081900
5. Haghpanah A., Masjedi F., Salehipour M. et al. Is COVID-19 a risk factor for progression of benign prostatic hyperplasia and exacerbation of its related symptoms?: a systematic review. Prostate Cancer Prostatic Dis 2022;25(1):27–38. DOI: 10.1038/s41391-021-00388-3
6. Cinislioglu A.E., Demirdogen S.O., Cinislioglu N. et al. Variation of serum PSA levels in COVID-19 infected male patients with benign prostatic hyperplasia (BPH): a prospective cohort studys. Urology 2022;159:16–21. DOI: 10.1016/j.urology.2021.09.016
7. Wichmann D., Sperhake J.P., Lütgehetmann M. et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 2020;173(4):268–77. DOI: 10.7326/M20-2003
8. Peng F., Li H., Ning Z. et al. CD147 and prostate cancer: a systematic review and meta-analysis. PLoS One 2016;11(9):e0163678. DOI: 10.1371/journal.pone.0163678
9. Shilts J., Crozier T.W.M., Greenwood E.J.D. et al. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep 2021;11(1):413. DOI: 10.1038/s41598-020-80464-1
10. Ragotte R.J., Pulido D., Donnellan F.R. et al. Human basigin (CD147) does not directly interact with SARS-CoV-2 spike glycoprotein. mSphere 2021;6(4):e0064721. DOI: 10.1128/mSphere.00647-21
11. Fenizia C., Galbiati S., Vanetti C. et al. SARS-CoV-2 entry: at the crossroads of CD147 and ACE2. Cells 2021;10(6):1434. DOI: 10.3390/cells10061434
12. Chekol Abebe E., Mengie Ayele T., Tilahun Muche Z., Asmamaw Dejenie T. Neuropilin 1: a novel entry factor for SARS-CoV-2 infection and a potential therapeutic target. Biologics 2021;15:143–52. DOI: 10.2147/BTT.S307352
13. Tse B.W.C., Volpert M., Ratther E. et al. Neuropilin-1 is upregulated in the adaptive response of prostate tumors to androgen-targeted therapies and is prognostic of metastatic progression and patient mortality. Oncogene 2017;36(24):3417–27. DOI: 10.1038/onc.2016.482
14. Gatti G., Quintar A.A., Andreani V. et al. Expression of toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate 2009;69(13):1387–97. DOI: 10.1002/pros.20984
15. Ou T., Lilly M., Jiang W. The pathologic role of toll-like receptor 4 in prostate cancer. Front Immunol 2018;9:1188. DOI: 10.3389/fimmu.2018.01188
16. Khanmohammadi S., Rezaei N. Role of toll-like receptors in the pathogenesis of COVID-19. J Med Virol 2021;93(5):2735–9. DOI: 10.1002/jmv.26826
17. Salciccia S., Del Giudice F., Eisenberg M.L. et al. Testosterone target therapy: focus on immune response, controversies and clinical implications in patients with COVID-19 infection. Ther Adv Endocrinol Metab 2021;12:20420188211010105. DOI: 10.1177/20420188211010105
18. Acheampong D.O., Barffour I.K., Boye A. et al. Male predisposition to severe COVID-19: review of evidence and potential therapeutic prospects. Biomed Pharmacother 2020;131:110748. DOI: 10.1016/j.biopha.2020.110748
19. Mjaess G., Karam A., Aoun F. et al. COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Prog Urol 2020;30(10):484–7. DOI: 10.1016/j.purol.2020.05.007
20. Mauvais-Jarvis F. Do anti-androgens have potential as therapeutics for COVID-19? Endocrinology 2021;162(8):bqab114. DOI: 10.1210/endocr/bqab114
21. Rastrelli G., Di Stasi V., Inglese F. et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2021;9(1):88–98. DOI: 10.1111/andr.12821
22. Schroeder M., Schaumburg B., Mueller Z. et al. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID-19 patients: a retrospective cohort study. Emerg Microbes Infect 2021;10(1):1807–18. DOI: 10.1080/22221751.2021.1969869
23. Ma L., Xie W., Li D. et al. Effect of SARS-CoV-2 infection upon male gonadal function: a single center-based study. medRxiv (preprint) 2020. DOI: 10.1101/2020.03.21.20037267
24. Cattrini C., Bersanelli M., Latocca M.M. et al. Sex hormones and hormone therapy during COVID-19 pandemic: implications for patients with cancer. Cancers (Basel) 2020;12(8):2325. DOI: 10.3390/cancers12082325
25. Di Zazzo E., Galasso G., Giovannelli P. et al. Estrogens and their receptors in prostate cancer: therapeutic implications. Front Oncol 2018;8:2. DOI: 10.3389/fonc.2018.00002
26. Montopoli M., Zumerle S., Vettor R. et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol 2020;31(8):1040–5. DOI: 10.1016/j.annonc.2020.04.479
27. Duarte M.B.O., Leal F., Argenton J.L.P., Carvalheira J.B.C. Impact of androgen deprivation therapy on mortality of prostate cancer patients with COVID-19: a propensity score-based analysis. Infect Agent Cancer 2021;16(1):66. DOI: 10.1186/s13027-021-00406-y
28. Jin J.M., Bai P., He W. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front Public Health 2020;8:152. DOI: 10.3389/fpubh.2020.00152
29. Baughn L.B., Sharma N., Elhaik E. et al. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clin Proc 2020;95(9):1989–99. DOI: 10.1016/j.mayocp.2020.06.018
30. Liontos M., Terpos E., Kunadis E. et al. Treatment with abirate rone or enzalutamide does not impair immunological response to COVID-19 vaccination in prostate cancer patients. Prostate Cancer Prostatic Dis 2022;25(1):117–8. DOI: 10.1038/s41391-021-00455-9
31. Safrai M., Herzberg S., Imbar T. et al. The BNT162b2 mRNA Covid-19 vaccine does not impair sperm parameters. Reprod Biomed Online 2022;44(4):685–8. DOI: 10.1016/j.rbmo.2022.01.008
32. Corti C., Curigliano G. Commentary: SARS-CoV-2 vaccines and cancer patients. Ann Oncol 2021;32(4):569–71. DOI: 10.1016/j.annonc.2020.12.019
33. Nawwar A.A., Searle J., Singh R., Lyburn I.D. Oxford-AstraZeneca COVID-19 vaccination induced lymphadenopathy on [18F] Choline PET/CT – not only an FDG finding. Eur J Nucl Med Mol Imaging 2021;48(8):2657–8 DOI: 10.1007/s00259-021-05279-2
34. Wong F.C., Martiniova L., Masrani A., Ravizzini G.C. 18F-Fluciclovine-avid reactive axillary lymph nodes after COVID-19 vaccination. Clin Nucl Med 2022;47(2):154–5. DOI: 10.1097/RLU.0000000000003844
35. Albano D., Volpi G., Dondi F. et al. COVID-19 vaccination manifesting as unilateral lymphadenopathies detected by 18F-Сholine PET/CT. Clin Nucl Med 2022;47(2):e187–9. DOI: 10.1097/RLU.0000000000003951
36. Oprea-Lager D.E., Vincent A.D., van Moorselaar R.J. et al. Dual-phase PET-CT to differentiate [18F]Fluoromethylcholine uptake in reactive and malignant lymph nodes in patients with prostate cancer. PLoS One 2012;7(10):e48430. DOI: 10.1371/journal.pone.0048430
Рецензия
Для цитирования:
Севергина Л.О., Глыбочко П.В., Коровин И.А., Рапопорт Л.М., Беляков А.В., Крюкова А.И., Ефимочкина С.М., Яворовский А.Г., Цариченко Д.Г., Королев Д.О. Механизмы воздействия вируса SARS-CoV-2 на ткань предстательной железы, включая ассоциации с гормональным статусом пациента и поствакцинальные реакции. Андрология и генитальная хирургия. 2022;23(3):41-47. https://doi.org/10.17650/2070-9781-2022-23-3-41-47
For citation:
Severgina L.O., Glybochko P.V., Коrovin I.A., Rapoport L.M., Belyakov A.V., Kryukova A.I., Efimochkina S.M., Yaworovsky A.G., Tsarichenko T.G., Korolev D.O. Mechanisms of SARS-CoV-2 virus effects on prostate tissues, including associations with patient hormonal state and postvaccination reactions. Andrology and Genital Surgery. 2022;23(3):41-47. (In Russ.) https://doi.org/10.17650/2070-9781-2022-23-3-41-47