Консервативные возможности коррекции андрологических нарушений после перенесенного COVID-19
https://doi.org/10.17650/1726-9784-2021-22-1-71-75
Аннотация
Новое коронавирусное заболевание 2019 г. (COVID-19), вызываемое SARS-CoV-2 (тяжелый острый респираторный синдром, связанный с коронавирусом-2), привело к серьезной обеспокоенности в области общественного здравоохранения во всем мире. Вопрос о том, может ли SARS-CoV-2 проникать в ткань яичка и/или сперму, в настоящее время остается без ответа. Также много вопросов по поводу профилактики и лечения пациентов, перенесших COVID-19, возникает у специалистов, занимающихся проблемами бесплодия. Появляется все больше публикаций, которые демонстрируют противовоспалительную, противовирусную, антиоксидантную активность растений, называемых адаптогенами. Это послужило поводом для анализа имеющихся работ по влиянию антиоксидантов и адаптогенов на репродуктивную функцию мужчин, перенесших COVID-19.
Об авторах
А. Ю. ПоповаРоссия
Алина Юрьевна Попова
117198 Москва, ул. Академика Опарина, 4
С И. Гамидов
Россия
117198 Москва, ул. Академика Опарина, 4
Т. В. Шатылко
Россия
117198 Москва, ул. Академика Опарина, 4
Н. Г. Гасанов
Россия
117198 Москва, ул. Академика Опарина, 4
Р. И. Овчинников
Россия
117198 Москва, ул. Академика Опарина, 4
Р. С. Гамидов
Россия
119991 Москва, ул. Трубецкая, 8, стр. 2
Список литературы
1. Zumla A., Chan J.F.W, Azhar E.I. et al. Coronaviruses – drug discovery and therapeutic options. Nat Rev Drug Discov 2016;15(5):327-47. DOI: 10.1038/nrd.2015.37.
2. Azkur A.K., Akdis M., Azkur D. et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 2020;75(7):1564–81. DOI: 10.1111/all.14364.
3. Tay M.Z., Poh C.M., Rénia L. et al. The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol 2020;20(6):363–74. DOI: 10.1038/s41577-020-0311-8.
4. Vardhana S.A., Wolchok J.D. The many faces of the anti-COVID immune response. J Exp Med 2020;217(6):e20200678. DOI: 10.1084/jem.20200678.
5. Li G., Fan Y., Lai Y. et al. Coronavirus infections and immune responses. J Med Virol 2020;92(4):424–32. DOI: 10.1002/jmv.25685.
6. Schijns V., Lavelle E.C. Prevention and treatment of COVID-19 disease by controlled modulation of innate immunity. Eur J Immunol 2020;50(7):932–8. DOI: 10.1002/eji.202048693.
7. Lega S., Naviglio S., Volpi S., Tommasini A. Recent Insight into SARS-CoV2 Immunopathology and Rationale for Potential Treatment and Preventive Strategies in COVID-19. Vaccines (Basel) 2020;8(2):224. DOI: 10.3390/vaccines8020224.
8. Yang R., Liu H., Bai C. et al. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol Res 2020;157:104820. DOI: 10.1016/j.phrs.2020.104820.
9. Sakurai A., Sasaki T., Kato S. et al. Natural History of Asymptomatic SARS-CoV-2 Infection. N Engl J Med 2020;383(9):885-6. DOI: 10.1056/NEJMc2013020.
10. Alberts B., Johnson A., Lewis J. et al. Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002.
11. Efferth T., Koch E. Complex Interactions between Phytochemicals. The MultiTarget Therapeutic Concept of Phytotherapy. Curr Drug Targets 2011;12(1):122–32. DOI: 10.2174/138945011793591626.
12. Panossian A., Seo E.-J., Efferth T. Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology. Phytomedicine 2018;50:257–84. DOI: 10.1016/j.phymed.2018.09.204.
13. Panossian A. Understanding adaptogenic activity: Specificity of the pharmacological action of adaptogens and other phytochemicals. Ann N Y Acad Sci 2017;1401(1):49–64. DOI: 10.1111/nyas.13399.
14. Lazarev N.V., Ljublina E.I., Rozin M.A. [State of nonspecific resistance] [Article in Russian]. Patol Fiziol Experim Ter 1959;3:16–21. PMID: 14414794.
15. Brekhman I., Dardymov I. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol 1969;9:419–30. DOI: 10.1146/annurev. pa.09.040169.002223.
16. Wagner H., Nörr H., Winterhoff H. Plant adaptogens. Phytomedicine 1994;1(1):63–76. DOI: 10.1016/S09447113(11)80025-5.
17. Wang Z., Xu X. ScRNA-Seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells 2020;9(4):920. DOI: 10.3390/cells9040920.
18. Esteves S.C., Lombardo F., Garrido N. et al. SARS-CoV-2 Pandemic and Repercussions for Male Infertility Patients: A Proposal for the Individualized Provision of Andrological Services. Andrology 2021;9(1):10–18. DOI: 10.1111/andr.12809.
19. Monteleone P.A., Nakano M., Lazar V. et al. A review of initial data on pregnancy during the COVID-19 outbreak: implications for assisted repro-ductive treatments. JBRA Assist Reprod 2020;24(2):219–25. DOI: 10.5935/1518-0557.20200030.
20. Zhou G., Chen S., Chen Z. Advances in COVID-19: The Virus, the Pathogenesis, and Ev-idence-Based Control and Therapeutic Strategies. Front Med 2020;14(2):117–25. DOI: 10.1007/s11684-020-0773-x.
21. Fan C., Li K., Ding Y. et al. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection. MedRxiv, 2020. Available at: https://www.medrxiv.org/ content/10.1101/2020.02.12.20022418v1. DOI: 10.1101/2020.02.12.20022418.
22. Cardona Maya W.D., Du Plessis S.S., Velilla P.A. SARS-CoV-2 and the Testis: Similarity with Other Viruses and Routes of Infection. Reprod Biomed Online 2020;40(6):763–4. DOI: 10.1016/j.rbmo.2020.04.009.
23. Song C., Wang Y., Li W. et al. Absence of 2019 Novel Coronavirus in Semen and Testes of COVID-19 Patients. Biol Reprod 2020;103(1):4-6. DOI: 10.1093/biolre/ioaa050.
24. Lee J.S., Hwang H.S., Ko E.J. et al. Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 2014;6(2):517–29. DOI: 10.3390/nu6020517.
25. Yoo D.G., Kim M.C., Park M.K. et al. Protective effect of ginseng polysaccharides on influenza viral infection. PLoS ONE 2012;7(3):e33678. DOI: 10.1371/journal.pone.0033678.
26. Salas-Huetos A., Rosique-Esteban N., Becerra-Tomás N. et al. The effect of nutrients and dietary supplements on sperm quality parameters: a systematic review and meta-analysis of randomized clinical trials. Adv Nutr 2018;9(6):833-48. DOI: 10.1093/advances/nmy057.
27. Lipovac M., Bodner F., Schütz A. et al. Increased hyauronan acid binding ability of spermatozoa indicating a better maturity, morphology, and higher DNA integrity after micronutrient supplementation. EMJ Urol 2014;1(1):60–65.
28. Yanuck S.F., Pizzorno J., Messier H.J., Fitzgerald K.N. Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 from Prevention through Recovery. Integr Med 2020;19(Suppl 1): 8–35. PMID: 32425712.
Рецензия
Для цитирования:
Попова А.Ю., Гамидов С.И., Шатылко Т.В., Гасанов Н.Г., Овчинников Р.И., Гамидов Р.С. Консервативные возможности коррекции андрологических нарушений после перенесенного COVID-19. Андрология и генитальная хирургия. 2021;22(1):71-75. https://doi.org/10.17650/1726-9784-2021-22-1-71-75
For citation:
Popova A.Yu., Gamidov S.I., Shatylko Т.V., Gasanov N.G., Ovchinnikov R.I., Gamidov R.S. Possibilities of conservative treatment for andrological conditions in men with history of COVID-19. Andrology and Genital Surgery. 2021;22(1):71-75. (In Russ.) https://doi.org/10.17650/1726-9784-2021-22-1-71-75