Механизм движения жгутиков сперматозоидов
https://doi.org/10.17650/2070-9781-2018-19-3-15-26
Аннотация
Механизм движения ресничек и жгутиков сперматозоидов основан на скольжении дуплетов микротрубочек друг относительно друга благодаря поступательному движению динеинов – моторных белков, способных перемещаться по поверхности микротрубочек и трансформирующих химическую энергию, содержащуюся в аденозинтрифосфате, в механическую энергию движения. Ранее внешние и внутренние динеиновые ручки считали сходными по структуре и функциям, однако недавно полученные экспериментальные данные свидетельствуют о значительном их различии по составу субъединиц, расположению в аксонеме и механизмам регуляции. И хотя понимание принципов изменения активности описанных моторных белков остается неполным, установлены тонкие механизмы функционирования данных структур.
Ключевые слова
Об авторах
С. А. РудневаРоссия
Светлана Айвенговна Руднева
115522 Москва, ул. Москворечье, 1
В. Б. Черных
Россия
115522 Москва, ул. Москворечье, 1
Список литературы
1. Noji H., Yasuda R., Yoshida M., Kinoshita K. Direct observation of the rotation of F1-ATPase. Nature 1997;386(6622):299–302. DOI: 10.1038/386299a0. PMID:9069291.
2. Kinoshita K. Jr, Yasuda R., Noji H. et al. F1-ATPase: a rotary motor made of a single molecule. Cell 1998;93(1): 21–4. PMID: 9546388.
3. Lindemann C.B., Lesich K.A. The geometric clutch at 20: stripping gears or gaining traction? Reproduction 2015;150(2):R45–53. DOI: 10.1530/REP-14-0498. PMID: 25918437.
4. Zamboni L. Sperm structure and its relevance to infertility. An electron microscopic study. Arch Pathol Lab Med 1992;116(4):325–44. PMID: 1558470.
5. Skowronek M.F., Alciaturi J., Casano- va G. et al. Value of quantitative ultramorphological sperm analysis in infertile men. Reprod Biol 2010;10(2):125–39. PMID: 20668504.
6. Брагина Е.Е., Бочарова Е.Н. Количественное электронно-микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная хирургия 2014;(1):41–50.
7. Kon T., Oyama T., Shimo-Kon R. et al. The 2.8 Å crystal structure of the dynein motor domain. Nature 2012;484(7394):345–50. DOI: 10.1038/nature10955. PMID: 22398446.
8. Schmidt H., Gleave E.S., Carter A.P. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 2012;19(5):492–7. DOI: 10.1038/nsmb.2272. PMID: 22426545.
9. Wirschell M., Hendrickson T., Sale W.S. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation. Cell Motil Cytoskeleton 2007;64(8):569–79. DOI: 10.1002/cm.20211. PMID: 17549744.
10. Habermacher G., Sale W.S. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 1997;136(1):167–76. PMID: 9008711.
11. Tash J.S, Means A.R. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod 1982;26(4):745–63. PMID: 6282354.
12. Bannai H., Yoshimura M., Takahashi K., Shingyoji C. Calcium regulation of microtubule sliding in reactivated sea urchin sperm flagella. J Cell Sci 2000;113(Pt 5):831–9. PMID: 10671372.
13. Nicastro D., Schwartz C., Pierson J. et al. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 2006;313(5789):944–8. DOI: 10.1126/science.1128618. PMID: 16917055.
14. Nicastro D., Fu X., Heuser T. et al. Cryoelectron tomography reveals conserved features of doublet microtubules in flagella. Proc Natl Acad Sci USA 2011;108(42):E845–53. DOI: 10.1073/pnas.1106178108. PMID: 21930914.
15. Baccetti B., Afzelius B.A. The biology of the sperm cell. Monogr Dev Biol 1976;(10):1–254. PMID: 1107820.
16. Guichard P., Hachet V., Majubu N. et al. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr Biol 2013;23(17):1620–8. DOI: 10.1016/j.cub.2013.06.061. PMID: 23932403.
17. Stephens R.E., Oleszko-Szuts S., Linck R.W. Retention of ciliary ninefold structure after removal of microtubules. J Cell Sci 1989;92(Pt 3):391–402. PMID: 2592445.
18. Fawcett D.W. The cell. Philadelphia. 2nd edn. Philadelphia: W.B. Saunders Co, 1981. 855 p.
19. Linck R.W., Chemes H., Albertini D.F. The axoneme: the propulsive engine of spermatozoa and cilia and associated ciliopathies leading to infertility. J Assist Reprod Genet 2016;33(2):141–56. DOI: 10.1007/s10815-016-0652-1. PMID: 26825807.
20. Mohri H. Amino-acid composition of “tubulin” constituting microtubules of sperm flagella. Nature 1968;217(5133):1053–4. PMID: 4296139.
21. Linck R.W., Amos L.A., Amos W.B. Localization of tektin filaments in microtubules of sea urchin sperm flagella by immunoelectron microscopy. J Cell Biol 1985;100(1):126–35. PMID: 3880749.
22. Norrander J.M., Perrone C.A., Amos L.A., Linck R.W. Structural comparison of tektins and evidence for their determination of complex spacings in flagellar microtubules. J Mol Biol 1996;257(2):385–97. DOI: 10.1006/jmbi.1996.0170. PMID: 8609631.
23. Linck R., Fu X., Lin J. et al. Insights into the structure and function of ciliary and flagellar doublet microtubules: tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem 2014;289(25):17427–44. PMID: 24794867. DOI: 10.1074/jbc.M114.568949.
24. Tanaka H., Iguchi N., Toyama Y. et al. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol 2004;24(18):7958–64. DOI: 10.1128/MCB.24.18.7958-7964.2004. PMID: 15340058.
25. Paturle-Lafanechère L., Manier M., Trigault N. et al. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci 1994;107(Pt 6):1529–43. PMID: 7962195.
26. Paturle-Lafanechère L., Eddé B., Denoulet P. et al. Characterization of a major brai1n tubulin variant which cannot be tyrosinated. Biochemistry 1991;30(43):10523–8. PMID: 1931974.
27. Mary J., Redeker V., Le Caer J.P. et al. Posttranslational modifications in the C-terminal tail of axonemal tubulin from sea urchin sperm. J Biol Chem 1996;271(17):9928–33. PMID: 8626629.
28. Eddé B., Rossier J., Le Caer J.P. et al. A combination of posttranslational modifications is responsible for the production of neuronal alpha-tubulin heterogeneity. J Cell Biochem 1991;46(2):134–42. DOI: 10.1002/jcb.240460207. PMID: 1680872.
29. Eddé B., Rossier J., Le Caer J.P. et al. Polyglutamylated alpha-tubulin can enter the tyrosination/detyrosination cycle. Biochemistry 1992;31(2):403–10. PMID: 1370628.
30. Alexander J.E., Hunt D.F., Lee M.K. et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci USA 1991;88(11):4685–9. PMID: 2052551.
31. Audebert S., Koulakoff A., BerwaldNetter Y. et al. Developmental regulation of polyglutamylated alpha- and betatubulin in mouse brain neurons. J Cell Sci 1994;107(Pt 8):2313–22. PMID: 7527057.
32. Kreitzer G., Liao G., Gundersen G.G. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesindependent mechanism. Mol Biol Cell 1999;10(4):1105–18. DOI: 10.1091/mbc.10.4.1105. PMID: 10198060.
33. Bré M.H., Redeker V., Quibell M. et al. Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J Cell Sci 1996;109(Pt 4):727–38. PMID: 8718664.
34. Gibbons I.R., Rowe A.J. Dynein: a protein with adenosine triphosphatase activity from cilia. Science 1965;149(3682):424–6. DOI: 10.1126/science.149.3682.424. PMID: 17809406.
35. Cole D.G. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic 2003;4(7):435–42. PMID: 12795688.
36. Neuwald A.F., Aravind L., Spouge J.L., Koonin E.V. AAA+: a class of chaperonelike ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999;9(1):27– 43. PMID: 9927482.
37. Gee M.A., Heuser J.E., Vallee R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 1997;390(6660):636–9. DOI: 10.1038/37663. PMID: 9403697.
38. Imamula K., Kon T., Ohkura R., Sutoh K. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc Natl Acad Sci USA 2007;104(41):16134–9. DOI: 10.1073/pnas.0702370104. PMID: 17911268.
39. Summers K., Gibbons I.R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci USA 1971;68(12):3092–6. PMID: 5289252.
40. Brokaw C.J. Bend propagation by a sliding filament model for flagella. J Exp Biol 1971;55(2):289–304. PMID: 5114025.
41. Brokaw C.J. Flagellar movement: a sliding filament model. Science 1972;178(4060):455–62. PMID: 4673044.
42. Brokaw C.J. Computer simulation of flagellar movement. I. Demonstration of stable bend propagation and bend initiation by the sliding filament model. Biophys J 1972;12(5):564–86. DOI: 10.1016/S0006-3495(72)86104-6. PMID: 5030565.
43. Dymek E.E., Smith E.F. A conserved CaM- and radial spoke associated complex mediates regulation of flagellar dynein activity. J Cell Biol 2007;179(3):515–26. DOI: 10.1083/jcb.200703107. PMID: 17967944.
44. Smith E.F., Yang P. The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. Cell Motil Cytoskeleton 2004;57(1):8–17. DOI: 10.1002/cm.10155. PMID: 14648553.
45. Аfzelius B.A. Electron microscopy of the sperm tail. Results obtained with a new fixative. J Biophys Biochem Cytol 1959;5(2):269–78. PMID: 13654448.
46. Satir P. Switching mechanisms in the control of ciliary motility. In: Modern cell biology. Vol. 4. Ed. by B. Satir. New York: Alan R. Liss, 1985. Pp. 1–46.
47. Satir P., Matsuoka T. Splitting the ciliary axoneme: implications for a “switchpoint” model of dynein arm activity in ciliary motion. Cell Motil Cytoskeleton 1989;14(3):345–58. DOI: 10.1002/cm.970140305. PMID: 2531043.
48. Brokaw C.J. Movement and nucleoside polyphosphatase activity of isolated flagella from Polytoma uvella. Exp Cell Res 1961;22:151–62.
49. Cibert C. Are local adjustments of the relative spatial frequencies of the dynein arms and the beta-tubulin monomers involved in the regulation of the 9 + 2 axoneme. J Theor Biol 2008;253(1):74– 89. DOI: 10.1016/j.jtbi.2008.01.029. PMID: 18405921.
50. Lindemann C.B. A geometric clutch hypothesis to explain oscillations of the axoneme of cilia and flagella. J Theor Biol 1994;168(2):175–89. DOI: 10.1006/jtbi.1994.1097.
51. Gibbons B.H., Gibbons I.R. The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci 1973;13(2):337–57. PMID: 4760590.
52. Warner F.D., Mitchell D.R. Structural conformation of ciliary dynein arms and the generation of sliding forces in Tetrahymena cilia. J Cell Biol 1978;76(2):261–77. PMID: 10605437.
53. Lindemann C.B., Rikmenspoel R. Sperm flagella: autonomous oscillations of the contractile system. Science 1972;175(4019):337–8. PMID: 4332629.
54. Lindemann C.B. Testing the geometric clutch hypothesis. Biol Cell 2004;96(9):681–90. DOI: 10.1016/j.biolcel.2004.08.001. PMID: 15567522.
55. Warner F.D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol 1974;63(1):35–63. PMID: 4424314.
56. Cibert C. Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function. Cell Motil Cytoskeleton 2003;54(4):296–316. DOI: 10.1002/cm.10100. PMID: 12601692.
57. Witman G.B., Plummer J., Sander G. Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components. J Cell Biol 1978;76(3):729–47.
58. Nonaka S., Tanaka Y., Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998;95(6):829–37. PMID: 9865700.
59. Marszalek J.R., Rui-Lozano P., Roberts E. et al. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 1999;96(9):5043–8. PMID: 10220415.
60. Nakano I., Kobayashi T., Yoshimura M., Shingyoji C. Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J Cell Sci 2003;116(Pt 8):1627–36. PMID: 12640046.
61. Huang B., Ramanis Z., Luck D.J. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function. Cell 1982;28(1):115–24. PMID: 6461414.
62. Porter M.E., Knott J.A., Gardner L.C. et al. Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain. J Cell Biol 1994;126(6):1495–507. PMID: 8089181.
63. Piperno G., Mead K., Shestak W. The inner dynein arms I2 interact with a “dynein regulatory complex” in Chlamydomonas flagella. J Cell Biol 1992;118(6):1455–63. PMID: 1387875.
64. Suarez S.S., Varosi S.M., Dai X. Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc Natl Acad Sci USA 1993;90(10):4660–4. PMID: 8506314.
65. Naito Y., Kaneko H. Reactivated tritonextracted models of Paramecium: modification of ciliary movement by calcium ions. Science 1972;176(4034):523–4. PMID: 5032354.
66. Brokaw C.J. Calcium-induced asymmetrical beating of tritondemembranated sea urchin sperm flagella. J Cell Biol 1979;82:401–11. PMID: 479307.
67. Gibbons B.H., Gibbons I.R. Calciuminduced quiescence in reactivated sea urchin sperm. J Cell Biol 1980;84(1): 13–27. PMID: 7350165.
68. Wakabayashi K., Yagi T., Kamiya R. Ca2+dependent waveform conversion in the flagellar axoneme of Chlamydomonas mutants lacking the central-pair/radial spoke system. Cell Motil Cytoskeleton 1997;38(1):22–8. DOI: 10.1002/(SICI)1097-0169(1997)38:1<22::AIDCM3>3.0.CO;2-J. PMID: 9295138.
69. Yang P., Diener D.R., Rosenbaum J.L., Sale W.S. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J Cell Biol 2001;153(6):1315–26. PMID: 11402073.
70. Salisbury J.L., Floyd G.L. Calciuminduced contraction of the rhizoplast of a quadriflagellate green alga. Science 1978;202(4371):975–7. DOI: 10.1126/science.202.4371.975. PMID: 17798796.
71. Salisbury J.L. Contractile flagellar roots: the role of calcium. J Submicrosc Cytol 1983;15:105–10.
72. Okamura N., Tajima Y., Soejima A. et al. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 1985;260(17):9699–705. PMID: 2991260.
73. Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003;79(4):829–43. PMID: 12749418.
74. Ford W.C. Regulation of sperm function by reactive oxygen species. Hum Reprod Update 2004;10(5):387–99. DOI: 10.1093/humupd/dmh034. PMID: 15218008.
75. Brokaw C.J., Luck D.J., Huang B. Analysis of the movement of Chlamydomonas flagella: the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol 1982;92(3):722–32. PMID: 7085755.
76. Okada Y., Nonaka S., Tanaka Y. et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 1999;4(4):459–68. PMID: 10549278.
77. Hamasaki T., Barkalow K., Richmond J., Satir P. cAMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc Natl Acad Sci USA 1991;88(18):7918–22. PMID: 1654550.
78. Kotani N., Sakakibara H., Burgess S.A. et al. Mechanical properties of inner-arm dynein-F (dynein I1) studied with in vitro motility assays. Biophys J 2007;93(3):886– 94. DOI: 10.1529/biophysj.106.101964. PMID: 17496036.
79. Smith E.F. Hydin seek: finding a function in ciliary motility. J Cell Biol 2007;176(4):403–4. DOI: 10.1083/jcb.200701113. PMID: 17296793.
80. Wirschell M., Zhao F., Yang C. et al. Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. Cell Motil Cytoskeleton 2008;65(3):238–48. DOI: 10.1002/cm.20257. PMID: 18157907.
81. Heuser T., Raytchev M., Krell J. et al. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 2009;187(6):921– 33. DOI: 10.1083/jcb.200908067. PMID: 20008568.
82. Darszon A., Beltrán C., Felix R. et al. Ion transport in sperm signaling. Dev Biol 2001;240(1):1–14. DOI: 10.1006/dbio.2001.0387. PMID: 11784043.
83. Steegborn C. Structure, mechanism, and regulation of soluble adenylyl cyclasessimilarities and differences to transmembrane adenylyl cyclases. Biochim Biophys. Acta 2014;1842(12 Pt B):2535–47. DOI: 10.1016/j.bbadis.2014.08.012. PMID: 25193033.
84. Sunahara R.K., Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002;2(3):168–84. DOI: 10.1124/mi.2.3.168. PMID: 14993377.
85. Hess K.C., Jones B.H., Marquez B. et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell 2005;9(2):249–59. DOI: 10.1016/j.devcel.2005.06.007. PMID: 16054031.
86. Xie F., Garcia M.A., Carlson A.E. et al. Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization. Dev Biol 2006;296(2):353–62. DOI: 10.1016/j.ydbio.2006.05.038. PMID: 16842770.
87. King S.M., Witman G.B. Multiple sites of phosphorylation within the alpha heavy chain of Chlamydomonas outer arm dynein. J Biol Chem 1994;269(7):5452–7. PMID: 7508939.
88. Yang P., Sale W.S. Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. J Biol Chem 2000;275(25):18905–12. DOI: 10.1074/jbc.M002134200. PMID: 10858448.
89. Gokhale A., Wirschell M., Sale W.S. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella. J Cell Biol 2009;186(6):817–24.
90. Wargo M.J., Smith E.F. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci USA 2003;100(1):137–42.
91. Tash J.S., Means A.R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod 1983;28(1):75–104.
Рецензия
Для цитирования:
Руднева С.А., Черных В.Б. Механизм движения жгутиков сперматозоидов. Андрология и генитальная хирургия. 2018;19(3):15-26. https://doi.org/10.17650/2070-9781-2018-19-3-15-26
For citation:
Rudneva S.A., Сhernykh V.B. A mechanism of sperm cilia beating. Andrology and Genital Surgery. 2018;19(3):15-26. (In Russ.) https://doi.org/10.17650/2070-9781-2018-19-3-15-26