Preview

Андрология и генитальная хирургия

Расширенный поиск

НОВЫЕ МОЛЕКУЛЯРНЫЕ ТЕХНОЛОГИИ В ДИАГНОСТИКЕ ГЕНЕТИЧЕСКИХ ПРИЧИН МУЖСКОГО БЕСПЛОДИЯ

https://doi.org/10.17650/2070-9781-2017-18-1-10-22

Полный текст:

Аннотация

В последние годы стремительное развитие технологий в области молекулярной генетики и цитогенетики привело к значительному расширению возможностей исследования и диагностики различных изменений генома. В статье приведено краткое описание новых молекулярных технологий, результаты их использования в репродуктивной медицине, а также их перспективы в диагностике причин бесплодия у мужчин. 

Об авторах

В. Б. Черных
ФГБНУ «Медико-генетический научный центр»; ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России
Россия

Контакты: Вячеслав Борисович Черных chernykh@med-gen.ru

115478 Москва, ул. Москворечье, 1



Т. А. Яманди
ФГБОУ ВО «Московский медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия
127473 Москва, Делегатская ул., 20/1


Н. Ю. Сафина
ФГБОУ ВО «Московский медико-стоматологический университет им. А.И. Евдокимова» Минздрава России
Россия
127473 Москва, Делегатская ул., 20/1


Список литературы

1. Глинкина Ж.И., Леонов Б.В., Бахарев В.А., Лукин В.А. ПГД врожденных и наследственных заболеваний методом FISH в программе ЭКО и ПЭ. В кн.: Лечение женского и мужского бесплодия. Вспомогательные репродуктивные технологии. Под ред. В.И. Кулакова, Б.В. Леонова, Л.Н. Кузьмичева. М.: Медицинское информационное агентство, 2005. C. 162–197. [Glinkina Zh.I., Leonov B.V., Bakharev V.A., Lukin V.A. PGD of congenial and hereditary disorders using FISH in the IVF and ET program. In: Treatment of male and female infertility. Assisted reproductive technologies. Eds.V. I. Kulakov, B.V. Leonov, L.N. Kuzmichev. Moscow: Meditsinskoe informatsionnoe agentstvo, 2005. P. 162–197. (In Russ.)].

2. Andrology: Male Reproductive Health and Dysfunction. Eds by: E. Nieschlag, H.M. Behre, S. Nieschlag. 3rd ed. Berlin; Heidelberg: Springer Verlag, 2010. 629 p.

3. Matzuk M.M., Lamb D.J. The biology of infertility: Research advances and clinical challenges. Nat Med 2008;14:1197–213.

4. Курило Л.Ф., Андреева М.В., Коломиец О.Л. и др. Генетические синдромы с нарушениями развития органов половой системы. Андрология и генитальная хирургия 2013; (4):17–27. [Kurilo L.F., Andreeva M.V., Kolomiets O.L. et al. Genetically caused congenital anomalies of reproductive system. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2013; (4):17–27. (In Russ.)].

5. Курило Л.Ф. Аномалии развития половой системы вследствие генных мутаций (Обзор литературы). Клиническая и экспериментальная морфология 2014; (2):58–65. [Kurilo L.F. Developmental anomalies of the reproductive system caused by gene mutations (literature review). Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2014;(2): 58–65. (In Russ.)].

6. Курило Л.Ф. Хромосомные заболевания органов половой системы. Клиническая и экспериментальная морфология 2015; (1):48–59. [Kurilo L.F. Chromosomal diseases of the reproductive organs. Klinicheskaya i eksperimentalnaya morfologiya = Journal of Clinical and Experimental Morphology 2015;(1):48–59. (In Russ.)].

7. Черных В.Б. Генетические факторы мужского бесплодия. Материалы. Всерос. науч.-практ. конф. «Молекуляр ные методы диагностики моногенных заболеваний: возможности и перспективы». Медицинская генетика 2006;2 (прилож.): 8–14. [Chernykh V.B. Genetic factors of male infertility. Proceedings of the All-Russian Scientific and Practical Conference “Molecular methods of diagnosis of monogenic disorders: Capabilities and possibilities.” Meditsinskaya genetika = Medical Genetics 2006;2 (appendix):8–14. (In Russ.)].

8. De Braekeleer M., Dao T.N. Cytogenetic studies in male infertility: a review. Hum. Reprod 1991;6(2):245–50.

9. Van Assche E., Bonduelle M., Tournaye H. et al. Cytogenetics of infertile men. Hum Reprod 1996;11(Supp l) 4:1–24.

10. Gardner R.J.M., Sutherland G.R., Shaffer L.G. Chromosome abnormalities and genetic counseling. 4th ed. New York: Oxford University Press, 2012. 634 p.

11. McLachlan R.I., O’Bryan M.K. State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 2010;95(3):1013–24.

12. Krausz C., Escamilla A.R., Chianese C. Genetics of male infertility: from research to clinic. Reproduction 2015;150(5):159–74.

13. Carrell D.T., Aston K.I., Oliva R. et al. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res 2016;363(1):295–312.

14. Суспицын Е.Н., Соколенко А.П. Применение молекулярных технологий нового поколения в медицинской генетике: Научно-образовательный курс для студентов медицинских вузов и врачей. СПб., 2013. 22 с. [Suspitsyn E.N., Sokolenko A.P. Use of next-generation molecular technologies in medical genetics: Educational course for medical universities and doctors. Saint-Petersburg, 2013. 22 p. (In Russ.)].

15. Абилев С.К., Глазер В.М. Мутагенез с основами генотоксикологии: Учеб. пос. М.; СПб.: Нестор-История, 2015. 304 с. [Abilev S.K., Glazer V.M. Mutagenesis with the basics of genotoxicology: Textbook. Moscow; Saint-Petersburg: Nestor-Istoriya, 2015. 304 p. (In Russ.)].

16. Ledig S., Röpke A., Wieacker P. Copy number variants in premature ovarian failure and ovarian dysgenesis. Sex Dev 2010;4(4–5):225–32.

17. Rajcan-Separovic E. Chromosome microarrays in human reproduction. Hum Reprod Update 2012;18(5):555–67.

18. Rajcan-Separovic E., Diego-Alvarez D., Robinson W.P. et al. Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss. Hum Reprod 2010;25(11):2913–22.

19. Bagheri H., Mercier E., Qiao Y. et al. Genomic characteristics of miscarriage copy number variants. Mol Hum Reprod 2015;21(8):655–61.

20. Barseghyan H., Délot E., Vilain E. New genomic technologies: an aid for diagnosis of disorders of sex development. Horm Metab Res 2015;47(5):312–20.

21. Eggers S., DeBoer K.D., van den Bergen J. et al. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fert Steril 2015;103(1):214–9.

22. Lee C.H., Wu C.C., Wu Y.N., Chiang H.S. Gene copy number variations in Asian patients with congenital bilateral absence of the vas deferens. Hum Reprod 2009;24(3):748–55.

23. Krausz C., Chianese C., Giachini C. et al. The Y chromosome-linked copy number variations and male fertility. J Endocrinol Invest 2011;34(5):376–82.

24. Tütelmann F., Simoni M., Kliesch S. et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cellonly syndrome. PLoS One 2011;6(4):e19426.

25. Krausz C., Giachini C., Lo Giacco D. et al. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One 2012;7(10):e44887.

26. Chianese C., Gunning A.C., Giachini C. et al. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS One 2014;9(6):e97746.

27. Lo Giacco D., Chianese C., SánchezCurbelo J. et al. Clinical relevance of Ylinked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Europ J Hum Genet 2014;22(6):754–61.

28. Dong Y., Pan Y., Wang R. et al. Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res 2015;14(4):16041–9.

29. Ребриков Д.В., Коростин Д.О., Шубина Е.С., Ильинский В.В. NGS: высокопроизводительное секвенирование. Под общ. ред. Д.В. Ребрикова. 2-е изд. М.: Бином. Лаборатория знаний, 2015. 232 с. [Rebrikov D.V., Korostin D.O., Shubina E.S., Ilyinskiy V.V. NGS:Highperformance sequencing. Ed. D.V. Rebrikov. 2nd edition. Moscow: Binom. Laboratoriya znaniy, 2015. 232 p. (In Russ.)].

30. Worthey E.A. Analysis and annotation of whole-genome or whole-exome sequencing-derived variants for clinical diagnosis. Curr Protoc Hum Genet 2013;79:Unit 9.24.

31. Shen Y., Yan Y., Liu Y. et al. A significant effect of the TSPY1 copy number on spermatogenesis efficiency and the phenotypic expression of the gr/gr deletion. Hum Mol Genet 2013;22(8):1679–95.

32. Aston K.I., Carrell D.T. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl 2009;30(6):711–25.

33. Aston K.I., Krausz C., Laface I. et al. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 2010;25(6):1383–97.

34. Yang F., Eckardt S., Leu N.A. et al. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. J Cell Biol 2008;180(4):673–9.

35. Wang W., Lu N., Xia Y. et al. FAS and FASLG polymorphisms and susceptibility to idiopathic azoospermia or severe oligozoospermia. Reprod Biomed Online 2009;18(1):141–7.

36. Xu M., Qin Y., Qu J. et al. Evaluation of five candidate genes from GWAS for association with oligozoospermia in a Han Chinese population. PLoS One 2013;8(11):e80374.

37. Sato Y., Tajima A., Tsunematsu K. et al. An association study of four candidate loci for human male fertility traits with male infertility. Hum Reprod 2015;30(6):1510–4.

38. Хаят С.Ш. Ультраструктурные и генетические основы двигательной активности жгутика сперматозоида. Андрология и генитальная хирургия 2012; (1):59–61. [Khayat S.Sh. Ultrastructural and genetic basics of spermatozoon flagellum mobility. Andrologiya i genitalnaya khirurgiya = Andrology and Genital Surgery 2012; (1):59–61. (In Russ.)].

39. Lu C., Xu M., Wang R. et al. A genomewide association study of mitochondrial DNA in Chinese men identifies two risk single nucleotide substitutions for idiopathic oligoasthenospermia. Mitochondrion 2015;24:87–92.

40. Arboleda V.A., Lee H., Sanchez F.J. et al. Targeted massively parallel sequencing provides comprehensive genetic diagnosis for patients with disorders of sex development. Clin Genet 2013;83(1):35–43.

41. Baxter R.M., Arboleda V.A., Lee H. et al. Exome sequencing for the diagnosis of 46,XY disorders of sex development. J Clin Endocrinol Metab 2015;100(2):E333–44.

42. Quaynor S.D., Bosley M.E., Duckworth C.G. et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol 2016;437:86–96.

43. Marshall C.R., Scherer S.W., Zariwala M.A. et al. Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3 (Bethesda) 2015;5(8):1775–81.


Для цитирования:


Черных В.Б., Яманди Т.А., Сафина Н.Ю. НОВЫЕ МОЛЕКУЛЯРНЫЕ ТЕХНОЛОГИИ В ДИАГНОСТИКЕ ГЕНЕТИЧЕСКИХ ПРИЧИН МУЖСКОГО БЕСПЛОДИЯ. Андрология и генитальная хирургия. 2017;18(1):10-22. https://doi.org/10.17650/2070-9781-2017-18-1-10-22

For citation:


Chernykh V.B., Yamandi T.A., Safina N.Y. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY. Andrology and Genital Surgery. 2017;18(1):10-22. (In Russ.) https://doi.org/10.17650/2070-9781-2017-18-1-10-22

Просмотров: 357


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2070-9781 (Print)