Preview

Андрология и генитальная хирургия

Расширенный поиск

Генетически обусловленные формы патозооспермии. Обзор литературы и результаты исследований

https://doi.org/10.17650/2070-9781-2015-16-3-29-39

Полный текст:

Об авторах

Елизавета Ефимовна Брагина
ФГБНУ «Медико-генетический научный центр»; НИИ физико-химической биологии им. А.Н. Белозерского ФГОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия

115478, Москва, ул. Москворечье, 1;

119992, Москва, Ленинские горы, 1, стр. 40



Т. М. Сорокина
ФГБНУ «Медико-генетический научный центр»
Россия
115478, Москва, ул. Москворечье, 1


Е. А. Арифулин
НИИ физико-химической биологии им. А.Н. Белозерского ФГОУ ВПО «Московский государственный университет им. М.В. Ломоносова»
Россия
119992, Москва, Ленинские горы, 1, стр. 40


Л. Ф. Курило
ФГБНУ «Медико-генетический научный центр»
Россия
115478, Москва, ул. Москворечье, 1


Список литературы

1. WHO laboratory manual for the examination and processing of human semen. WHO, 2010. 5th edition, 2012.

2. Kruger T.F., Menkveld R., Stander F.S. et al. Sperm morphologic features as a prognostic factor in vitro fertilization. Fertil Steril 1986;46(6):1118–23.

3. Holstein A.F. [Morphological studies on abnormal human spermatids and spermatozoa (author, s transl.)]. Virchows Arch A Pathol Anat Histol 1975;367(2):93–112.

4. Afzelius B.A., Eliasson R. Male and female infertility problems in the immotilecilia syndrome. Eur J Respir Dis Suppl 1983;127:144–7.

5. Francavilla S., Pelliccione F., Cordeschi G. et al. Utrastructural analysis of asthenozoospermic ejaculates in the era of assisted procreation. Fertil Steril 2006;85(4):940–6.

6. Брагина Е.Е., Курило Л.Ф., Шилейко Л.В., Абдумаликов Р.М. Ультраструктурный и количественный кариологический анализ состава половых клеток из эякулята пациента с абсолютной астенозооспермией. Проблемы репродукции 1997;3(4):72–5. [Bragina E.E., Kurilo L.F., Shileyko L.V., Abdumalikov R.M. Ultrastructural and quantitative karyological analysis of composition of germ cells from the ejaculate of patients with absolute asthenozoospermia. Problemy reproduktsii = Reproduction Issues 1997;3(4):72–5. (In Russ.)].

7. Basu B., Brueckner M. Cilia multifunctional organelles at the center of vertebrate left-right asymmetry. Curr Top Dev Biol 2008;85:151–74.

8. Kuehni C.E., Frischer T., Strippoli M.P. et al.; ERS Task Force on Primary Ciliary Dyskinesia in Children. Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J 2010;36(6):1248–58.

9. Kartagener M. Zur Pathogenese der bronchiektasien: bronchiektasien bei situs viscerum inversus. Beiträge zur Klinik der Tuberkulose 1933;83:489–501.

10. Rossman C.M., Newhouse M.T. Primary ciliary dyskinesia: evaluation and management. Pediatr Pulmonol 1988;5(1):36–50.

11. Inaba K. Molecular basis of sperm flagellar axonemes: structural and evolutionary aspects. Ann NY Acad Sci 2007;1101:506–26.

12. Nakano I., Kobayashi T., Yoshimura M., Shingyoji C. Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes. J Cell Sci 2003;116(Pt 8):1627–36.

13. Kurkowiak M., Ziętkiewicz E., Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet 2015;52(1):1–9.

14. Zariwala M.A., Leigh M.W., Ceppa F. et al. Mutations of DNAI1 in primary ciliary dyskinesia: evidence of founder effect in a common mutation. Am J Respir Crit Care Med 2006;174(8):858–66.

15. Omran H., Häffner K., Völkel A. et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol 2000;23(5):696–702.

16. Hornef N., Olbrich H., Horvath J. et al. DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 2006;174(2):120–6.

17. Loges N.T., Olbrich H., Fenske L. et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 2008;83(5):547–58.

18. Knowles M.R., Leigh M.W., Ostrowski L.E. et al.; Genetic Disorders of Mucociliary Clearance Consortium. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia.Am J Hum Genet 2013;92(1):99–106.

19. Onoufriadis A., Paff T., Antony D. et al. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet 2013;92(1):88–98.

20. Castleman V.H., Romio L., Chodhari R. et al. Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause PCD with central-microtubular-pair abnormalities. Am J Hum Genet 2009;84(2):197–209.

21. Kott E., Legendre M., Copin B. et al. Loss-of-function mutations in RSPH1 cause primary ciliary dyskinesia with centralcomplex and radial-spoke defects. Am J Hum Genet 2013;93(3):561–70.

22. Ben Khelifa M., Coutton C., Zouari R. et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 2014;94(1):95–104.

23. Neesen J., Kirschner R., Ochs M. et al. Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 2001;10(11):1117–28.

24. Zuccarello D., Ferlin A., Cazzadore C. et al. Mutations in dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod 2008;23(8):1957–62.

25. Serebrovska Z.A., Serebrovskaya T.V., Pyle R.L., Di Pietro M.L. Transmission of male infertility and intracytoplasmic sperm injection(mini-review). Fiziol Zh 2006;52(3):110–8.

26. Ferlin A., Arredi B., Foresta C. Genetic causes of male infertility. Reprod Toxicol 2006;22(2):133–41.

27. Брагина Е.Е., Абдумаликов Р.А. Руководство по сперматологии. М.: Сорек-полиграфия, 2002. 94 с. 27. [Bragina E.E., Abdumalikov R.A. Manual in spermatology. Moscow: Sorek-Poligrafiya, 2002. 94 p. (In Russ.)].

28. Tanii I., Yagura T., Inagaki N. et al. Preferential localization of rat GAPDS on the ribs of fibrous sheath of sperm flagellum and its expression during flagellar formation. Acta Histochem Cytochem 2007;40(1):19–26.

29. Turner R.M. Tales from the tail: what do we really know about sperm motility? J Androl 2003;24(6):790–803.

30. Eddy E.M., Toshimori K., O, Brien D.A. Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 2003;61(1):103–15.

31. Miki K., Qu W., Goulding E.H. et al. Glyceraldehyde 3-phosphate dehydrogenaseS, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA 2004;101(47):16501–6.

32. Welch J.E., Brown P.L., O, Brien D.A. et al. Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl 2000;21(2):328–38.

33. Miki K., Willis W.D., Brown P.R. et al. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. Dev Biol 2002;248(2):331–42.

34. Chemes H.E., Olmedo S.B., Carrere C. et al. Ultrastructural pathology of the sperm flagellum: association between flagellar pathology and fertility prognosis in severely asthenozoospermic men. Hum Reprod 1998;13(9):2521–6.

35. Moretti E., Collodel G. Three cases of genetic defects affecting sperm tail: a FISH study. J Submicrosc Cytol Pathol 2006;38 (2–3):137–41.

36. Baccetti B., Collodel G., Estenoz M. et al. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Hum Reprod 2005;20(10):2790–4.

37. Turner R.M., Musse M.P., Mandal A. et al. Molecular genetic analysis of two human sperm fibrous sheath proteins, AKAP4 and AKAP3, in men with dysplasia of the fibrous sheath. J Androl 2001;22(2):302–15.

38. Olmedo S.B., Rawe V.Y., Nodar F.N. et al. Pregnancies established through intracytoplasmic sperm injection (ICSI) using spermatozoa with dysplasia of fibrous sheath. Asian J Androl 2000;2(2):125–30.

39. Garza Dávila S.A., Patrizio P. Reproductive outcomes in patients with male infertility because of Klinefelter's syndrome, Kartagener's syndrome, roundhead sperm, dysplasia fibrous sheath, and “stump” tail sperm: an updated literature review. Curr Opin Obstet Gynecol 2013;25(3):229–46.

40. Schirren C.G., Holstein A.F., Schirren C. Uber die morphogenese rundkopfiger spermatozoen des menschen. Andrologie 1971;3:117–25.

41. Florke-Gerloff S., Topfer-Petersen E., Muller-Esterl W. et al. Biochemical and genetic investigation of round-headed spermatozoa in infertile men including two brothers and their father. Andrologia 1984;16(3):187–202.

42. Dam A.H., Feenstra I., Westphal J.R. et al. Globozoospermia revisited. Hum Reprod Update 2007;13(1):63–75.

43. Grasa P., Coward K., Young C., Parrington J. The pattern of localization of the putative oocyte activation factor, phospholipase Czeta, in uncapacit-ated, capacitated, and ionophore-treated human spermatozoa. Hum Reprod 2008;23(11):2513–22.

44. Брагина Е.Е., Курило Л.Ф., Шилейко Л.В. и др. Бесплодие при глобулоспермии и отсутствии акросомы сперматозоидов. Проблемы репродукции 1997;3(3):53–5. [Bragina E.E., Kurilo L.F., Shileyko L.V. et al. Infertility with globulospermia and absence of acrosomes of spermatozoids. Problemy reproduktsii = Reproduction Issues 1997;3(3):53–5. (In Russ.)].

45. De Braekeleer M., Nguyen M.H., Morel F., Perrin A. Genetic aspects of monomorphic teratozoospermia: a review. J Assist Reprod Genet 2015;32(4):615–23.

46. Dam A.H., Ramos L., Dijkman H.B. et al. Morphology of partial globozoospermia. J Androl 2011;32(2):199–206.

47. Kullander S., Rausing A. On roundheaded human spermatozoa. Int J Fertil 1975;20(1):33–40.

48. Kilani Z., Ismail R., Ghunaim S. et al. Evaluation and treatment of familial globozoospermia in five brothers. Fertil Steril 2004;82(5):1436–9.

49. Dam A.H., Koscinski I., Kremer J.A. et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 2007;81(4):813–20.

50. Liu G.L., Shi Q.W., Lu G.X. A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl 2010;12(4):556–60.

51. Xiao N., Kam C., Shen C. et al. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 2009;119(4):802–12.

52. Harbuz R., Zouari R., Pierre V. et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet 2011;88(3):351–61.

53. Koscinski I., Elinati E., Fossard C. et al. DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet 2011;88(3):344–50.

54. Pierre V., Martinez G., Coutton C. et al. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 2012;139(16):2955–65.

55. Kierszenbaum A.L., Tres L.L. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol 2004;67(4):271–84.

56. Zhu F., Gong F., Lin G., Lu G. DPY19L2 gene mutations are a major cause of globozoospermia: identification of three novel point mutations. Mol Hum Reprod 2013;19(6):395–404.

57. Coutton C., Zouari R., Abada F. et al. MLPA and sequence analysis of DPY19L2 reveals point mutations causing globozoospermia. Hum Reprod 2012;27(8):2549–58.

58. Lundin K., Sjogren A., Nilsson L., Hamberger L. Fertilization and pregnancy after intracytoplasmic microinjection of acrosomeless spermatozoa. Fertil Steril 1994;62(6):1266–7.

59. Egashira A., Murakami M., Haigo K. et al. A successful pregnancy and live birth after intracytoplasmic sperm injection with globozoospermic sperm and electrical oocyte activation. Fertil Steril 2009;92(6):2037.

60. Karaca N., Akpak Y.K., Oral S. et al. A successful healthy childbirth in a case of total globozoospermia with oocyte activation by calcium ionophore. J Reprod Infertil 2015;16(2):116–20.

61. Узбеков Р.Э., Алиева И.Б. Центросома – загадка «клеточного процессора». Цитология 2008;(2):91–112. [Uzbekov R.E., Aliyeva I.B. Centrosome as a mystery of a “cell processor”. Tsitologiya = Cytology 2008; (2):91–112. (In Russ.)].

62. De Kretser D.M. Ultrastructural features of human spermiogenesis. Z Zellforsch Mikrosk Anat 1969;98(4):477–505.

63. Zamboni L., Stefanini M. The fine structure of the neck of mammalian spermatozoa. Anat Rec 1971;169(2):155–72.

64. Sathananthan A.H., Kola I., Osborne J. et al. Centrioles in the beginning of human development. Proc Natl Acad Sci USA 1991;88(11):4806–10.

65. Fawcett D.W., Phillips D.M. The fine structure and development of the neck region of the mammalian spermatozoon. Anat Rec 1969;165(2):153–64.

66. Sathananthan A.H., Ratnam S.S., Ng S.C. et al. The sperm centriole: its inheritance, replication and perpetuation in early human embryos Hum Reprod 1996;11(2):345–56.

67. Perotti M.E., Gioria M. Fine structure and morphogenesis of «headless» human spermatozoa associated with infertility. Cell Biol Int Rep 1981;5(2):113.

68. Chemes H.E., Carizza C., Scarinci F. et al. Lack of a head in human spermatozoa from sterile patients: a syndrome associated with impaired fertilization. Fertil Steril 1987;47(2):310–6.

69. Baccetti B., Selmi M.G., Soldani P. Morphogenesis of «decapitated spermatozoa» in a man. J Reprod Fertil 1984;70(2):395–7.

70. Chemes H.E., Puigdomenech E.T., Carizza C. et al. Acephalic spermatozoa and abnormal development of the head-neck attachment: a human syndrome of genetic origin. Hum Reprod 1999;14(7):1811–8.

71. Porcu G., Mercier G., Boyer P. et al. Pregnancies after ICSI using sperm with abnormal head-tail junction from two brothers: case report. Hum Reprod 2003;18(3):562–7.

72. Baccetti B., Capitani S., Collodel G. et al. Genetic sperm defects and consanguinity. Hum Reprod 2001;16(7):1365–71.

73. Kamal A., Mansour R., Fahmy I. et al. Easily decapitated spermatozoa defect: a possible cause of unexplained infertility. Hum Reprod 1999;14(11):2791–5.

74. Holstein A.F., Schill W.B., Breucker H. Dissociated centriole development as a cause of spermatid malformation in man. J Reprod Fertil 1986;78(2):719–25.

75. Baccetti B., Burrini A.G., Collodel G. et al. Morphogenesis of the decapitated and decaudated sperm defect in two brothers. Gamete Res 1989;23(2):181–8.

76. Liska F., Gosele C., Rivkin E. et al. Rat hd mutation reveals an essential role of centrobin in spermatid head shaping and assembly of the head-tail coupling apparatus. Biol Reprod 2009;81(6):1196–205.

77. Mendoza-Lujambio I., Burfeind P., Dixkens C. et al. The Hook1 gene is nonfunctional in the abnormal spermatozoon head shape(azh) mutant mouse. Hum Mol Genet 2002;11(14):1647–58.

78. Gambera L., Falcone P., Mencaglia L. et al. Intracytoplasmic sperm injection and pregnancy with decapitated sperm. Fertil Steril 2010;93(4):1347.

79. Брагина Е.Е., Бочарова Е.Н. Количественное электронно-микроскопическое исследование сперматозоидов при диагностике мужского бесплодия. Андрология и генитальная ­хирургия 2014;(1):41–50. [Bragina E.E., Bocharova E.N. Quantitative electron microscopic examination of spermatozoids in diagnostics of male infertility. Andrologiya i genital'naya khirurgiya = Andrology and Genital Surgery 2014;(1):41–50. (In Russ.)].


Рецензия

Для цитирования:


Брагина Е.Е., Сорокина Т.М., Арифулин Е.А., Курило Л.Ф. Генетически обусловленные формы патозооспермии. Обзор литературы и результаты исследований. Андрология и генитальная хирургия. 2015;16(3):29-39. https://doi.org/10.17650/2070-9781-2015-16-3-29-39

For citation:


Bragina E.E., Sorokina T.M., Arifulin E.A., Kurilo L.F. Genetically determined patozoospermia. Literature review and research results. Andrology and Genital Surgery. 2015;16(3):29-39. (In Russ.) https://doi.org/10.17650/2070-9781-2015-16-3-29-39

Просмотров: 1807


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2070-9781 (Print)
ISSN 2412-8902 (Online)