Preview

Андрология и генитальная хирургия

Расширенный поиск

Дегидроэпиандростерон: биосинтез, метаболизм, биологическое действие и клиническое применение (аналитический обзор)

https://doi.org/10.17650/2070-9781-2015-1-13-22

Полный текст:

Аннотация

Представлена фундаментальная информация относительно метаболизма дегидроэпиандростерона (ДГЭА), его биологической роли и возможности использования для заместительной терапии. Рассмотрены видовые различия в синтезе ДГЭА в коре надпочечников. ДГЭА и ДГЭА-сульфат вырабатывают надпочечники только представителей отряда приматов, т. е. человека, высших и низших обезьян. Их синтез идет по Δ5-пути: холестерин прегненолон 17-гидроксипрегненолон ДГЭА. Надпочечники других видов животных, включая крыс и мышей, не синтезируют ДГЭА. Вместе с тем определенные структуры мозга не только человека и обезьян, но и других животных синтезируют de novo ДГЭА и его предшественники, которые обозначаются как нейростероиды. Показано, что клетки Пуркинье, которые играют важную роль в формировании памяти и в процессе обучения, являются главным местом образования нейростероидов у млекопитающих и других позвоночных. Для выяснения возрастной динамики циркулирующего ДГЭА и других стероидов у человека нами проведено изучение его уровня в различные периоды постнатального развития. Пик образования гормона приходится на возраст 25–30 лет. В промежутке от 20 до 90 лет его уровень у человека падает на 90 %. Уровень кортизола в крови с возрастом не изменяется, что приводит к дисбалансу в соотношении кортизол/ДГЭА. Доказана определяющая роль ДГЭА как источника (предшественника) биологически активных половых стероидов: тестостерона, эстрадиола и эстрона в периферических тканях. Рассмотрены биодоступность и возможные механизмы взаимодействия гормона с физиологическими и патологическими процессами в организме человека и животных. В экспериментах на животных показана более высокая биодоступность ДГЭА при трансдермальном введении по сравнению с его приемом per os, так как в этом случае не происходит быстрая инактивация стероида в печени при первом пассаже. Большинство современных исследований у мужчин и женщин демонстрируют выраженную зависимость биодоступности ДГЭА в организме от способа введения препарата. 

Об авторах

Н. П. Гончаров
ФГБУ «Эндокринологический научный центр» Минздрава России; Россия, 115478, Москва, ул. Москворечье, 1
Россия


Г. В. Кация
ФГБУ «Эндокринологический научный центр» Минздрава России; Россия, 115478, Москва, ул. Москворечье, 1
Россия


Список литературы

1. Butenandt A., Dannenbaum H. Isolierung eines neuen physiologisch unwirksamen sterinderivats aus mannerharn, seine verknupfung mit dehydroandrosteron und androsteron. Z Physiol Chem 1934;229:192–5.

2. Munson P.L., Gallagher T.F., Koch F.C. Isolation of dehydroisoandrosterone sulfate from normal male urine. J Biol Chem 1944;152(1):67–77.

3. Migeon C.J., Plager J.E. Identification and isolation of dehydroisoandrosterone sulfate from peripheral human plasma. J Biol Chem 1954;209(2):767–72.

4. Baulieu E.E. Three sulfate esters of 17-ketosteroids in the plasma of human subjects after administration of ACTH. J Clin Endocrinol Metab 1960;20:900–4.

5. Baulieu E.E., Corpechot C., Dray F. et al. An adrenal secreted “androgen”: dehydroisoandrosterone sulfate. Its metabolism and a tentative generalization on the metabolism of other steroid conjugates in man. Recent Prog Horm Res 1965;21:411–500.

6. Гончаров Н.П. Функция коры надпочечников у низших обезьян в норме и при некоторых патологических состояниях. Дис. ... д-ра мед. наук. Сухуми, 1971. [Goncharov N.P. Function of the adrenal cortex of monkeys in normal and pathological conditions. Thesis ... of doctor of medical scienses. Sukhumi, 1971. (In Russ.)].

7. Leinonen P., Ruokonen A., Kontturi M., Vihko R. Effects of estrogen treatment on human testicular unconjugated steroid and steroid sulfate production in vivo. J Clin Endocrinol Metab 1981;53(3):569–73.

8. McKenna T.J., DiPietro D.L., Brown R.D. et al. Plasma 17-OHpregnenolone in normal subjects. J Clin Endocrinol Metab 1974;39(5):833–41.

9. Baulieu E.E., Robel P. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive neurosteroids. J Endocrinol 1996;150(Suppl):S221–39.

10. Goncharov N.P., Katsiya G.V., Dzhokua A.A. et al. Effect of neurosteroid dehydroepiandrosterone on the higher nervous activity of old non-human primates. Hum Physiol 2014;40(2):149–55.

11. Belanger A., Candas B., Dupont A. et al. Changes in serum concentrations of conjugated and unconjugated steroids in 40to 80-year-old men. J Clin Endocrinol Metab 1994;79(4):1086–90.

12. Rotter J.I., Wong F.L., Lifrak E.T., Parker L.N. A genetic component to the variation of dehydroepiandrosterone sulfate. Metabolism 1985;34(8):731–6.

13. Birkenhager-Gillesse E.G., Derksen J., Lagaay A.M. Dehydroepiandrosterone sulphate (DHEAS) in the oldest old, aged 85 and over. Ann NY Acad Sci 1994;719:543–52.

14. Field A.E., Colditz G.A., Willett W.C. et al. The relation of smoking, age, relative weight, and dietary intake to serum adrenal steroids, sex hormones, and sex hormonebinding globulin in middle-aged men. J Clin Endocrinol Metab 1994;79(5):1310–6.

15. Thomas G., Frenoy N., Legrain S. et al. Serum dehydroepiandrosterone sulfate levels as an individual marker. J Clin Endocrinol Metab 1994;79(5):1273–6.

16. Rosenfeld R.S., Rosenberg B.J., Fukushima D.K., Hellman L. 24-Hour secretary pattern of dehydroisoandrosterone and dehydroisoandrosterone sulfate. J Clin Endocrinol Metab 1975;40(5):850–5.

17. Гончаров Н.П., Колесникова. Г.С. Кортикостероиды: метаболизм, механизм действия и клиническое применение. М.: АдамантЪ, 2002. С. 62–75. [Goncharov N.P., Kolesnikova G.S. Corticos teroids: metabolism, mechanisms of action, and clinical application. Moscow: Adamant, 2002. Pp. 62–75. (In Russ.)].

18. Zumoff B., Rosenfeld R.S., Strain G.W. et al. Sex differences in the twenty-four-hour mean plasma concentrations of dehydroisoandrosterone (DHA) and dehydroisoandrosterone sulfate (DHAS) and the DHA to DHAS ratio in normal adults. J Clin Endocrinol Metab 1980;51(2):330–3.

19. Watanabe S., Tani T., Watanabe S., Seno M. Effects of free fatty acids on the binding of steroid hormones to bovine serum albumin. Lipids 1990;25(10):633–8.

20. Goncharov N.P., Katzya G.V. Adrenal and gonadal steroid levels in long-living males from highland regions of the Southwestern Caucasian Mountains. Aging Male 1998;1:200–5.

21. Bird C.E., Masters V., Clark A.F. Dehydroepiandrosterone sulfate: kinetics of metabolism in normal young men and women. Clin Invest Med 1984;7(2):119–22.

22. Haning R.V. Jr, Chabot M., Flood C.A. et al. Metabolic clearance rate (MCR) of dehydroepiandrosterone sulfate (DS), its metabolism to dehydroepiandrosterone, androstenedione, testosterone, and dihydrotestosterone, and the effect of increased plasma DS concentration on DS MCR in normal women. J Clin Endocrinol Metab 1989;69(5):1047–52.

23. MacDonald P.C. et al. Plasma precursors of estrogen. III. Conversion of plasma dehydroisoandrosterone to estrogen in young nonpregnant women. Gynecol Invest 1976; 7(3):165–75.

24. Horton R., Tait J.F. In vivo conversion of dehydroisoandrosterone to plasma androstenedione and testosterone in man. J Clin Endocrinol Metab 1967;27(1):79–88.

25. Poortman J. et al. Interaction of delta-5androstene-3beta, 17beta-diol with estradiol and dihydrotestosterone receptors in human myometrial and mammary cancer tissue. J Clin Endocrinol Metab 1975;40(3):373–9.

26. Labrie F., Dupont A., Belanger A. et al. New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin Invest Med 1982;5(4):267–75.

27. Khalil M.W., Strutt B., Vachon D., Killinger D.W. Effect of dexamethasone and cytochrome P450 inhibitors on the formation of 7alpha-hydroxydehydroepiandrosterone by human adipose stromal cells. J Steroid Biochem Mol Biol 1994;48(5–6):545–52.

28. Luu-The V., Dufort I., Paquet N. et al. Structural characterization and expression of the human dehydroepiandrosterone sulfotransferase gene. DNA Cell Biol 1995;14(6):511–8.

29. Rheaume E., Simard J., Morel Y. et al. Congenital adrenal hyperplasia due to point mutations in the type II 3 betahydroxysteroid dehydrogenase gene. Nat Genet 1992;1(4):239–45.

30. Labrie F., Sugimoto Y., Luu-The V. et al. Structure of human type II 5 alpha-reductase gene. Endocrinology 1992;131(3):1571–3.

31. Labrie F., Simard J., Luu-The V. et al. Structure and tissue-specific expression of 3 beta-hydroxysteroid dehydrogenase/ 5-ene-4-ene isomerase genes in human and rat classical and peripheral steroidogenic tissues. J Steroid Biochem Mol Biol 1992;41(3–8):421–35.

32. Luu-The V., Zhang Y., Poirier D., Labrie F. Characteristics of human types 1, 2 and 317 beta-hydroxysteroid dehydrogenase activities: oxidation/reduction and inhibition. J Steroid Biochem Mol Biol 1995;55(5– 6):581–7.

33. Labrie Y., Durocher F., Lachance Y. et al. The human type II 17 beta-hydroxysteroid dehydrogenase gene encodes two alternatively spliced mRNA species. DNA Cell Biol 1995;14(10):849–61.

34. Labrie F., Simard J., Luu-The V. The 3-beta-hydroxysteroid dehydrogenase/ isomerase gene family: lessions from type II 3beta-HSD congenital deficiency. In: V. Hansson, F.O. Levy, K. Tasken (eds.). Signal transduction in testicular cells. Ernst Schering Research Foundation Workshop. Berlin, Heidelberg, New York: SpringerVerlag, 1996. Pp. 185–218.

35. Stahl F., Schnorr D., Pilz C., Dörner G. Dehydroepiandrosterone (DHEA) levels in patients with prostatic cancer, heart diseases and under surgery stress. Exp Clin Endocrinol 1992;99(2):68–70.

36. Zumoff B., Levin J., Rosenfeld R.S. et al. Abnormal 24-hr mean plasma concentrations of dehydroisoandrosterone and dehydroisoandrosterone sulfate in women with primary operable breast cancer. Cancer Res 1981;41(9 Pt 1):3360–3.

37. Schwartz A.G., Pashko L., Whitcomb J.M. Inhibition of tumor development by dehydroepiandrosterone and related steroids. Toxicol Pathol 1986;14(3):357–62.

38. Gordon G.B., Shantz L.M., Talalay P. Modulation of growth, differentiation and carcinogenesis by dehydroepiandrosterone. Adv Enzyme Regul 1987;26:355–82.

39. Li S., Yan X., Belanger A., Labrie F. Prevention by dehydroepiandrosterone of the development of mammary carcinoma induced by 7,12-dimethylbenz(a)anthracene (DMBA) in the rat. Breast Cancer Res Treat 1994;29(2):203–17.

40. Casson P.R., Andersen R.N., Herrod H.G. et al. Oral dehydroepiandrosterone in physiologic doses modulates immune function in postmenopausal women. Am J Obstet Gynecol 1993;169(6):1536–9.

41. Morales A.J., Nolan J.J., Nelson J.C., Yen S.S. Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J Clin Endocrinol Metab 1994;78(6):1360–7.

42. Diamond P., Cusan L., Gomez J.L. et al. Metabolic effects of 12-month percutaneous dehydroepiandrosterone replacement therapy in postmenopausal women. J Endocrinol 1996;150(Suppl):S43–50.

43. Bolander F.F. Molecular endocrinology. San Diego, London: Academic Press, 1996. Pp. 1–23.

44. Labrie C., Martel C., Dufour J.M. et al. Novel compounds inhibit estrogen formation and action. Cancer Res 1992;52(3):610–5.

45. Luo S., Sourla A., Labrie C. et al. Effect of twenty-four-week treatment with the antiestrogen EM-800 on estrogensensitive parameters in intact and ovariectomized mice. Endocrinology 1998;139(5):2645–56.

46. Luu-The V., Labrie C., Simard J. et al. Structure of two in tandem human 17 betahydroxysteroid dehydrogenase genes. Mol Endocrinol 1990;4(2):268–75.

47. Labrie F., Bélanger A., Simard J. et al. DHEA and peripheral androgen and estrogen formation: intracinology. Ann NY Acad Sci 1995;774:16–28.

48. Studd J.W. et al. Plasma hormone profiles after the menopause and bilateral oophorectomy. Postgrad Med J 1978;54 Suppl 2:25–30.

49. Longcope C., Hui S.L., Johnston C.C. Jr. Free estradiol, free testosterone, and sex hormone-binding globulin in perimenopausal women. J Clin Endocrinol Metab 1987;64(3):513–8.

50. Steinberg K.K., Freni-Titulaer L.W., DePuey E.G. et al. Sex steroids and bone density in premenopausal and perimenopausal women. J Clin Endocrinol Metab 1989;69(3):533–9.

51. Labrie C., Flamand M., Bélanger A., Labrie F. High bioavailability of dehydroepiandrosterone administered percutaneously in the rat. J Endocrinol 1996;150(Suppl):S107–18.

52. Labrie F., Bélanger A., Cusan L., Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab 1997;82(8):2403–9.

53. Huggins C., Hodges C.V. Studies on prostatic cancer. I. Effect of castration, estrogen and androgen injections on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941;1(4):293–7.

54. Гончаров Н.П. Антиандрогены и их применение при раке предстательной железы. Андрология и генитальная хирургия 2002;(2):40–9. [Goncharov N.P. Antiandrogens and their use with, prostate cancer. Andrologiya i genital naya khirurgiya = Andrology and Genital Surgery 2002; (2):40–9. (In Russ.)].

55. Neri R., Florance K., Koziol P., Van Cleave S. A biological profile of a nonsteroidal antiandrogen, SCH 13521 (4,–nitro-3,trifluoromethylisobutyranilide). Endocrinology 1972;91(2):427–37.

56. Гончаров Н.П., Кация Г.В. Гормон здоровья и долголетия. М.: АдамантЪ, 2012. 159 с. [Goncharov N.P., Katsiya G.V. Hormone of health and longevity. Moscow: Adamant, 2012. 159 p. (In Russ.)].

57. Cohen H.N., Hay I.D., Beastall G.H., Thomson J.A. Failure of adrenal androgen to induce puberty in familial cytomegalic adrenocortical hypoplasia. Lancet 1982;2(8313):1471–2.

58. Nestler J.E., Barlascini C.O., Clore J.N., Blackard W.G. Dehydroepiandrosterone reduces serum low density lipoprotein levels and body fat but does not alter insulin sensitivity in normal men. J Clin Endocrinol Metab 1988;66(1):57–61.

59. Buster J.E., Casson P.R., Straughn A.B. et al. Postmenopausal steroid replacement with micronized dehydroepiandrosterone: preliminary oral bioavailability and dose proportionally studies. Am J Obstet Gynecol 1992;166(4):1163–8.

60. Casson P.R., Straughn A.B., Umstot E.S. et al. Delivery of dehydroepiandrosterone to premenopausal women: effects of micronization and nonoral administration. Am J Obstet Gynecol 1996;174(2):649–53.

61. Casson P.R., Faquin L.C., Stentz F.B. et al. Replacement of dehydroepiandrosterone enhances T-lymphocyte insulin binding in postmenopausal women. Fertil Steril 1995;63(5):1027–31.

62. Casson P.R., Santoro N., Elkind-Hirsch K. et al. Postmenopausal dehydroepiandrosterone administration increases free insulin-like growth factor-I and decreases high-density lipoprotein: a sixmonth trial. Fertil Steril 1998;70(1):107–10.

63. Labrie F., Diamond P., Cusan L. et al. Effect of 12-month dehydroepiandrosterone replacement therapy on bone, vagina, and endometrium in postmenopausal women. J Clin Endocrinol Metab 1997;82(10):3498–505.


Для цитирования:


Гончаров Н.П., Кация Г.В. Дегидроэпиандростерон: биосинтез, метаболизм, биологическое действие и клиническое применение (аналитический обзор). Андрология и генитальная хирургия. 2015;16(1):13-22. https://doi.org/10.17650/2070-9781-2015-1-13-22

For citation:


Goncharov N.P., Katsiya G.V. Dehydroepiandrosterone biosynthesis, metabolism, biological effects, and clinical use (analytical review). Andrology and Genital Surgery. 2015;16(1):13-22. (In Russ.) https://doi.org/10.17650/2070-9781-2015-1-13-22

Просмотров: 701


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2070-9781 (Print)
ISSN 2412-8902 (Online)